Previous |  Up |  Next

Article

References:
[1] Albertoni S., Montagnini В.: On the spectrum of neutron transport equation in finite bodies. J. Math. Anal. Appl. 13, 19-48, 1966. DOI 10.1016/0022-247X(66)90073-4 | MR 0189741 | Zbl 0144.48304
[2] Hille E., Phillips R. S.: Functional Analysis and Semigroups. Revised Edition, American Math. Soc. Colloq. Publ. Vol. XXXI, Providence, 1957. MR 0089373 | Zbl 0078.10004
[3] Jörgens K.: On asymptotic expansion in the theory of neutron transport. Comm. Pure Appl. Math. 11, 219-242, 1957. DOI 10.1002/cpa.3160110206 | MR 0103419
[4] Kaper H. G.: A collection of problems in transport theory. Transport Theory and Stat. Physics 4, 13, 125-134, 1975. DOI 10.1080/00411457508214535 | MR 0465011
[5] Krein M. G., Rutman M. A.: Linear operators leaving invariant a cone in a Banach space. Uspekhi mat. nauk. III, N1, 3 - 95, 1948, (Russian). English translation in Amer. Math. Soc. Translations No. 26, pp. 128, 1950. MR 0027128 | Zbl 0030.12902
[6] Larsen E. W., Zweifel P. F.: On the spectrum of the linear transport operator. J. Math.-Phys. 15, 1987-1997, 1974. DOI 10.1063/1.1666570 | MR 0359648
[7] Lehner J.: An unsymmetric operator arising in the theory of neutron diffusion. Comm. Pure Appl. Math. 9, 487-497, 1956. DOI 10.1002/cpa.3160090320 | MR 0084097 | Zbl 0070.45302
[8] Lehner J., Wing G. M.: On the spectrum of an unsymmetric operator arising in the transport theory of neutrons. Comm. Pure Appl. Math. 8, 217-234, 1955. MR 0070038 | Zbl 0064.23004
[9] Lehner J., Wing G. M.: Solution of the linearized Boltzman equation for the slab geometry. Duke Math. J. 23, 125-142, 1956. MR 0079214
[10] Marek I.: Frobenius theory of positive operators. Comparison theorems and applications. SIAM J. Appl. Math. 19, 607-628, 1970. DOI 10.1137/0119060 | MR 0415405 | Zbl 0219.47022
[11] Marek I.: On some spectral properties of Radon-Nikolskii operators and their generalizations. Comment. Math. Univ. Carol. 3: 1, 20-30, 1962. MR 0144216
[12] Niiro F., Sawashima I.: On spectral properties of positive irreducible operators in an arbitrary Banach lattice and problems of H. H. Schaefer. Sci. Papers College Gen. Educ., Univ. of Tokyo, 16, 145-183, 1966. MR 0205084
[13] Sawashima I.: Spectral properties of some positive operators. Natur. Sci. Rep. Ochanomizu Univ. 15. 55-64, 1964. MR 0187096 | Zbl 0138.07801
[14] Schaefer H. H.: Banach Lattices and Positive Operators. Springer Verlag, Berlin-Heidelberg-New York, 1974. MR 0423039 | Zbl 0296.47023
[15] Shikhov S. В.: Lectures in Mathematical Theory of Reactors. I. Linear Theory. Atomizdat, Moscow, 1973 (Russian).
[16] Shizuta Y.: On the classical solutions of the Boltzmann equation. Preprint 1977. MR 0720591
[17] Taylor A. E.: Introduction to Functional Analysis. J. Wiley Publ., New York, 1958. MR 0098966 | Zbl 0081.10202
[18] Ukai S.: On the existence of global solutions of mixed problem from non-linear Boltzmann equation. Proc. Japan Acad. 50, 179-184, 1974. MR 0363332
[19] Vidav I.: Existence and uniqueness of non-negative eigenfunctions of the Boltzmann operator. J. Math. Anal. Appl. 22, 144-155, 1968. DOI 10.1016/0022-247X(68)90166-2 | MR 0230531
[20] Vidav I.: Spectra of perturbed semigroups with applications to transport theory. J. Math. Anal. Appl. 30, 264-279, 1970. DOI 10.1016/0022-247X(70)90160-5 | MR 0259662 | Zbl 0195.13704
[21] Wing G. M.: An Introduction to Transport Theory. J. Wiley Publ., New York, 1962. MR 0155646
Partner of
EuDML logo