Previous |  Up |  Next

Article

Title: Inverse semigroups determined by their lattices of inverse subsemigroups (English)
Author: Jones, Peter R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 31
Issue: 1
Year: 1981
Pages: 24-47
Summary lang: Russian
.
Category: math
.
MSC: 20M10
idZBL: Zbl 0471.20045
idMR: MR604109
DOI: 10.21136/CMJ.1981.101720
.
Date available: 2008-06-09T14:42:14Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101720
.
Reference: [1] M. N. Arsinov: Projectivity of a free product and isomorphisms of groups.Sibirsk. Mat. Ž. 11 (1970), 12-19 (Russian). MR 0262375
Reference: [2] G. Birkhoff: Lattice Theory.Amer. Math. Soc., 3rd Edition, 1967. Zbl 0153.02501, MR 0227053
Reference: [3] A. H. Clifford Sind G. В. Preston: Algebraic Theory of Semigroups.Math. Surveys 7, Amer. Math. Soc, Providence R.I., Vol. I, 1961, Vol. II, 1967.
Reference: [4] C. Eberhart: Elementary orthodox semigroups.'Proc. Symposium on Inverse Semigroups and their Generalizations, Northern Illinois University, 1973, 23-33. Zbl 0387.20054, MR 0382489
Reference: [5] T. Eršova: Monogenically inverse semigroups.Ural. Gos. Univ. Mat. Zap. 8 (1971) tetrad' 1, 30-33 (Russian). MR 0299702
Reference: [6] T. Eršova: Determinability of monogenically inverse semigroups by the lattice of inverse subsemigroups.Ural. Gos. Univ. Mat. Zap. 8 (1971), tetrad' 1, 34-49 (Russian). MR 0299703
Reference: [7] L. M. Gluskin: Elementary generalized groups.Mat. Sb. 41 (83) (1957), 23-26 (Russian). MR 0090595
Reference: [8] D. G. Green: Extensions of a semilattice by an inverse semigroup.Bull. Austral. Math. Soc. 9 (1973), 21-31. Zbl 0271.20033, MR 0323928, 10.1017/S0004972700042829
Reference: [9] M. Hall Jnr.: The Theory of Groups.MacMillan, New York, 1959. Zbl 0084.02202, MR 0103215
Reference: [10] C. S. Holmes: Projectivites of free products.Rend. Sem. Mat. Univ. Padova 42 (1969), 341-387. MR 0268286
Reference: [11] J. M. Howie: The maximum idempotent-separating congruence on an inverse semigroup.Proc. Edinburgh Math. Soc. (2), 14 (1964), 71-79. MR 0163976
Reference: [12] J. M. Howie: An Introduction to Semigroup Theory.Academic Press, London, 1976. Zbl 0355.20056, MR 0466355
Reference: [13] P. R. Jones: Basis properties for inverse semigroups.J. Algebra 50 (1978), 135-152. Zbl 0372.20048, MR 0466359, 10.1016/0021-8693(78)90179-5
Reference: [14] P. R. Jones: Lattice isomorphisms of inverse semigroups.Proc. Edinburgh Math. Soc., 21 (1978), 149-157. Zbl 0403.20039, MR 0514902
Reference: [15] P. R. Jones: Semimodular inverse semigroups.J. London Math. Soc., 17 (1978), to appear. Zbl 0387.20042, MR 0500629
Reference: [16] P. R. Jones: Distributive inverse semigroups.J. London Math. Soc., 17 (1978), to appear. Zbl 0387.20043, MR 0500630
Reference: [17] P. R. Jones: Lattice isomorphisms of distributive inverse semigroups.preprint. Zbl 0412.20064, MR 0500630
Reference: [18] N. Knox: On the inverse semigroup coproduct of an arbitrary non-empty collection of groups.Ph. D. dissertation, Tennessee State University, Tennessee, 1976.
Reference: [19] B. P. Kočin: The structure of inverse ideal-simple $\omega$-semigroups.Vestnik Leningrad Univ. 23, No. 7. (1968), 41-50 (Russian). MR 0227296
Reference: [20] D. B. McAlister: Groups, semilattices and inverse semigroups, II.Trans. Amer. Math. Soc. 196 (1974), 351-370. MR 0357660, 10.1090/S0002-9947-74-99950-4
Reference: [21] D. B. McAlister: Inverse semigroups generated by a pair of subgroups.Proc. Royal Soc. Edinburgh 77A (1977), 9-22. Zbl 0358.20077, MR 0450438
Reference: [22] W. D. Munn: Uniform semilattices and bisimple inverse semigroups.Quart. J. Math. Oxford (2), 17 (1966), 151-159. Zbl 0147.00804, MR 0199292, 10.1093/qmath/17.1.151
Reference: [23] W. D. Munn: Regular ю-semigroups.Glasgow Math. J. 9 (1968), 46-66. MR 0229742, 10.1017/S0017089500000288
Reference: [24] W. D. Munn: Fundamental inverse semigroups.Quart. J. Math. Oxford (2), 21 (1970), 157-170. Zbl 0219.20047, MR 0262402, 10.1093/qmath/21.2.157
Reference: [25] W. D. Munn: On simple inverse semigroups.Semigroup Forum 1 (1970), 63-74. Zbl 0218.20052, MR 0263954, 10.1007/BF02573020
Reference: [26] O. Ore: Structures and group theory, II.Duke Math. J. 4 (1938), 247-269. Zbl 0020.34801, MR 1546048, 10.1215/S0012-7094-38-00419-3
Reference: [27] G. B. Preston: Inverse semigroups: some open questions.Proc. Symposium on Inverse Semigroups and their Generalizations, Northern Illinois University, 1973, 122-139. Zbl 0356.20058, MR 0414755
Reference: [28] N. R. Reilly: Congruences on a bisimple inverse semigroup in terms of RP-systems.Proc London Math. Soc. (3), 23 (1971), 99-127. Zbl 0223.20073, MR 0306375
Reference: [29] N. R. Reilly, W. D. Munn: E-unitary congruences on inverse semigroups.Glasgow Math. J. 77(1976), 57-75. Zbl 0328.20048, MR 0404498
Reference: [30] E. L. Sadovskii: Über die Strukturisomorphismen von Freigruppen.Doklady 23 (1941), 171-174. MR 0005726
Reference: [31] E. L. Sadovskii: On structural isomorphisms of free products of groups.Mat. Sb. 21 (63) (1947), 63-82 (Russian). MR 0021937
Reference: [32] L. N. Sevrin: Fundamental questions in the theory of projectivities of semilattices.Mat. Sb. 66 (108) (1965), 568-597 (Russian). MR 0211924
Reference: [33] M. Suzuki: Structure of a Group and the Structure of its Lattice of Subgroups.Springer, 1956. Zbl 0070.25406, MR 0083487
.

Files

Files Size Format View
CzechMathJ_31-1981-1_3.pdf 2.995Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo