Previous |  Up |  Next

Article

Title: The lattice of equational theories. Part I: Modular elements (English)
Author: Ježek, Jaroslav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 31
Issue: 1
Year: 1981
Pages: 127-152
Summary lang: Russian
.
Category: math
.
MSC: 03C05
MSC: 08B05
MSC: 08B15
MSC: 20D30
idZBL: Zbl 0477.08006
idMR: MR604120
DOI: 10.21136/CMJ.1981.101731
.
Date available: 2008-06-09T14:43:04Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101731
.
Reference: [1] A. D. Bol'bot: О mnogoobrazijach $\omega$-algebr.Algebra i logika 9/4 (1970), 406-414. MR 0286733
Reference: [2] S. Burris: On the structure of the lattice of equatiorial classes $L(\tau$).Algebra Universalis 1 (1971), 39-45. MR 0291050, 10.1007/BF02944953
Reference: [3] G. Grätzer: Universal algebra.second edition. (To appear.) MR 0538623
Reference: [4] E. Jacobs, R. Schwabauer: The lattice of equational classes of algebras with one unary operation.Amer. Math. Monthly 71 (1964), 151-155. Zbl 0117.26003, MR 0162740, 10.1080/00029890.1964.11992212
Reference: [5] J. Ježek: Primitive classes of algebras with unary and nullary operations.Colloq. Math. 20 (1969), 159-179. MR 0246813, 10.4064/cm-20-2-159-179
Reference: [6] J. Ježek: Principal dual ideals in lattices of primitive classes.Comment. Math. Univ. Carolinae 9 (1968), 533-545. MR 0244131
Reference: [7] J. Ježek: On atoms in lattices of primitive classes.Comment. Math. Univ. Carolinae (1970), 515-532. MR 0269571
Reference: [8] J. Ježek: The existence о upper semicomplements in lattices of primitive classes.Comment. Math. Univ. Carolinae 12 (1971), 519-532. MR 0292734
Reference: [9] J. Ježek: Upper semicomplements and a definable element in the lattice of groupoid varieties.Comment. Math. Univ. Carolinae 12 (1971), 565-586. MR 0289398
Reference: [10] J. Ježek: Intervals in the lattice of varieties.Algebra Universalis 6 (1976), 147-158. MR 0419332, 10.1007/BF02485826
Reference: [11] J. Kalicki: The number of equationally complete classes of equations.Indag. Math. 17 (1955), 660-662. Zbl 0073.24601, MR 0074351, 10.1016/S1385-7258(55)50090-4
Reference: [12] R. McKenzie: Definability in lattices of equational theories.Annals of Math. Logic 3 (1971), 197-237. Zbl 0328.02038, MR 0280349, 10.1016/0003-4843(71)90007-6
Reference: [13] G. McNulty: The decision problem for equational bases of algebras.Annals of Math. Logic 10 (1976), 193-259. Zbl 0376.08005, MR 0432440, 10.1016/0003-4843(76)90009-7
Reference: [14] G. McNulty: Undecidable properties of finite sets of equations.J. Symbolic Logic (1977). MR 0485307
Reference: [15] G. McNulty: Structural diversity in the lattice of equational theories.(To appear.) Zbl 0799.08011, MR 0631723
Reference: [16] G. Pollák: O: n the existence of covers in lattices of varieties.235-247 in: Contributions to general algebra. Proc. of the Klagenfurt Conference, May 25-28, 1978. Verlag Johannes Heyn, Klagenfurt 1979. MR 0537424
Reference: [17] A. Tarski: Equational logic and equational theories of algebras.275-288 in: H. A. Schmidt, K. Schütte and H. J. Thiele, eds.. Contributions to Mathematical Logic, North-Holland, Amsterdam 1968. Zbl 0209.01402, MR 0237410
Reference: [18] W. Taylor: Equational logic.Houston J. of Math. (To appear.) Zbl 0421.08004, MR 0546853
Reference: [19] A. N. Trachtman: О pokryvajuščich elementach v strukture mnogoobrazij algebr.Matem. Zametki 15 (1974), 307-312.
.

Files

Files Size Format View
CzechMathJ_31-1981-1_14.pdf 3.099Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo