Previous |  Up |  Next

Article

Title: On $o$-ideals of groups of divisibility (English)
Author: Močkoř, Jiří
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 31
Issue: 3
Year: 1981
Pages: 390-403
Summary lang: Russian
.
Category: math
.
MSC: 06F20
MSC: 13A05
MSC: 13A18
MSC: 16A08
idZBL: Zbl 0511.13001
idMR: MR626913
DOI: 10.21136/CMJ.1981.101754
.
Date available: 2008-06-09T14:44:42Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101754
.
Reference: [1] Bourbaki N.: Algèbre commutative.Hermann, Paris, 196L Zbl 1107.13002
Reference: [2] Conrad P.: Lattice ordered groups.Tulane University 1970. Zbl 0258.06011
Reference: [3] Gilmer R.: Multiplicative ideal theory.Queen's Papers, Lecture Notes No. 12, Kingston, 1968. Zbl 0155.36402, MR 0229624
Reference: [4] Gilmer R., Parker T.: Divisibility properties in semigroup rings.Mich. Math. J. 21 (1974), 65-86. Zbl 0285.13007, MR 0342635, 10.1307/mmj/1029001210
Reference: [4a] Gilmer R., Heinzer W. J.: Intersections of quotient rings of an integral domain.J. Math. Kyoto Univ. 7 (1967), 133-150. Zbl 0166.30601, MR 0223349, 10.1215/kjm/1250524273
Reference: [5] Jaffard P.: Les Systèmes d'Idéaux.Dunod, Paris, 1960. Zbl 0101.27502, MR 0114810
Reference: [6] Kaplansky L: Commutative rings.Allyn and Bacon, Boston 1970. Zbl 0203.34601, MR 0254021
Reference: [7] Maths E.: Torsion-free modules.Univ. of Chicago Press, Chicago, 111., 1972. MR 0344237
Reference: [8] Mockof J.: A realization of öf-groups.Czech. Math. J. 27 (1977), 296-312. MR 0447454
Reference: [9] Mockof J.: Prüfer d-groups.Czech. Math. J. 28 (1978), 127-139. MR 0491400
Reference: [10] Mockof J.: A realization of groups of divisibility.Comment. Math. Univ. Sancti Pauli, Tokyo, XXVI (1911), 61-75. MR 0466101
Reference: [11] Mockof J.: Topological groups of divisibility.(to appear in Colloq. Math.). MR 0522372
Reference: [12] Mockof J.: A note on approximation theorems.(to appear in Arch. Math.).
Reference: [13] Mott J. L.: Convex directed subgroups of a group of divisibility.Can. J. Math. XXVI (3), (1974), 532-542. Zbl 0245.06008, MR 0364213, 10.4153/CJM-1974-049-2
Reference: [14] Mott J. L., Schexnayder M.: Exact sequences of semi-value groups.J. reine angew. Math., 283/284 (1976), 388-401. Zbl 0347.13001, MR 0404247
Reference: [15] Nakano T.: Rings and partly ordered systems.Math. Z. 99 (1967), 355-376. Zbl 0149.27702, MR 0215765, 10.1007/BF01111015
Reference: [16] Ohm J.: Semi-valuations and groups of divisibility.Can. J. Math. XXI (1969), 576-591. Zbl 0177.06501, MR 0242819, 10.4153/CJM-1969-065-9
Reference: [17] Ohm J., Pendleton R. L.: On integral domains of the form $\cap D\sb{P}, P$, P minimal.J. reine angew. Math. 241 (1970), 147-159. MR 0263793
Reference: [18] Rachůnek J.: Directed convex subgroups of ordered groups.Acta Univ. Palac. Olomucensis Fac. R. Nat. 41 (1973), 39-46. MR 0357273
Reference: [19] Rachůnek J.: Prime subgroups of ordered groups.Czech. Math. J. 24 (1974), 541 - 551. MR 0357274
Reference: [20] Sheldon P.: Two counterexamples involving complete integral closure in finite dimensional Prüfer domains.(to appear in J. Algebra). Zbl 0275.13008, MR 0332771
.

Files

Files Size Format View
CzechMathJ_31-1981-3_4.pdf 2.027Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo