Previous |  Up |  Next

Article

Title: A new characterization of the maximum genus of a graph (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 31
Issue: 4
Year: 1981
Pages: 604-613
Summary lang: Russian
.
Category: math
.
MSC: 05C10
MSC: 05C35
idZBL: Zbl 0482.05034
idMR: MR631605
DOI: 10.21136/CMJ.1981.101776
.
Date available: 2008-06-09T14:46:22Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101776
.
Reference: [1] I. Anderson: Perfect matchings of a graph.J. Combinatorial Theory 10 В (1971), 183-186. Zbl 0172.48904, MR 0276105, 10.1016/0095-8956(71)90041-4
Reference: [2] M. Behzad G. Chartrand, L. Lesniak-Foster: Graphs & Digraphs.Prindle, Weber & Schmidt, Boston 1979. MR 0525578
Reference: [3] R. A. Duke: The genus, regional number, and Betti number of a graph.Canad. J. Math. 18 (1966), 817-822. Zbl 0141.21302, MR 0196731, 10.4153/CJM-1966-081-6
Reference: [4] J. Edmonds, D. R. Fulkerson: Transversals and matroid partition.J. Res. Nat. Bur. Stand. В 69 (1965), 147-153. Zbl 0141.21801, MR 0188090, 10.6028/jres.069B.016
Reference: [5] F. Harary: Graph Theory.Addison-Wesley, Reading (Mass.) 1969. Zbl 0196.27202, MR 0256911
Reference: [6] N. P. Homenko: Method of $\fi$-transformations and some its applications.(in Ukrainian, English summary). $\fi$-peretvorennya grafiv (N. P. Homenko, ed.). IM AN URSR, Kiev 1973, pp. 35-96. MR 0411995
Reference: [7] N. P. Homenko N. A. Ostroverkhy, V. A. Kusmenko: The maximum genus of a graph.(in Ukrainian, EngHsh summary). ($\fi$-peretvorennya grafiv (N. P. Homenko, ed.). IM AN URSR, Kiev 1973, pp. 180-210.
Reference: [8] M. Jungerman: A characterization of upper embeddable graphs.Trans. Amer. Math. Soc. 241 (1978), 401-406. Zbl 0379.05025, MR 0492309
Reference: [9] E. A. Nordhaus R. D. Ringeisen В. M. Stewart, and A. T. White: A Kuratowski-type theorem for the maximum genus of a graph.J. Combinatorial Theory 12 В (1972), 260-267. MR 0299523, 10.1016/0095-8956(72)90040-8
Reference: [10] E. A. Nordhaus В. M. Stewart, and A. T. White: On the maximum genus of a graph.J. Combinatorial Theory 11 В (1971), 258-267. MR 0286713, 10.1016/0095-8956(71)90036-0
Reference: [11] R. D. Ringeisen: Survey of results on the maximum genus of a graph.J. Graph Theory 3 (1979), 1-13. Zbl 0398.05029, MR 0519169, 10.1002/jgt.3190030102
Reference: [12] G. Ringel: Map Color Theorem.Springer-Verlag, Berlin 1974. Zbl 0287.05102, MR 0349461
Reference: [13] W. T. Tutte: On the problem of decomposing a graph into n connected factors.J. London Math. Soc. 36 (1961), 221-230. Zbl 0096.38001, MR 0140438
Reference: [14] A. T. White: Graphs of groups on surfaces.In: Combinatorial Surveys: Proceedings of the Sixth British Combinatorial Conference (P. J. Cameron, ed.). Academic Press, London 1977, pp. 165-197. Zbl 0378.05028, MR 0491290
Reference: [15] R. J. Wilson: Introduction to Graph Theory.Longman, London 1972. Zbl 0249.05101, MR 0826772
Reference: [16] N. H. Xuong: How to determine the maximum genus of a graph.J. Combinatorial Theory 26 В (1979), 217-225. Zbl 0403.05035, MR 0532589, 10.1016/0095-8956(79)90058-3
Reference: [17] J. W. T. Youngs: Minimal embeddings and the genus of a graph.J. Math. Mech. 12 (1963), 303-315. MR 0145512
.

Files

Files Size Format View
CzechMathJ_31-1981-4_9.pdf 1.276Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo