Title:
|
Duality theory for linear $n$-th order integro-differential operators with domain in $L^p_m$ determined by interface side conditions (English) |
Author:
|
Brown, Richard C. |
Author:
|
Tvrdý, Milan |
Author:
|
Vejvoda, Otto |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
32 |
Issue:
|
2 |
Year:
|
1982 |
Pages:
|
183-196 |
Summary lang:
|
Russian |
. |
Category:
|
math |
. |
MSC:
|
47E05 |
idZBL:
|
Zbl 0505.45003 |
idMR:
|
MR654055 |
DOI:
|
10.21136/CMJ.1982.101795 |
. |
Date available:
|
2008-06-09T14:47:37Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/101795 |
. |
Reference:
|
[1] R. C. Brown, A. M. Krall: $n$-th order ordinary differential systems under Stieltjes boundary conditions.Czech. Math. J. 27 (102) (1977), 119-131. Zbl 0369.34006, MR 0430394 |
Reference:
|
[2] R. C. Brown, M. Tvrdý: Generalized boundary value problems with abstract side conditions and their adjoints I.Czech. Math. J., 30 (105) (1980), 7-27. MR 0565904 |
Reference:
|
[3] R. N. Bryan: A nonhomogeneous linear differential system with interface conditions.Proc. AMS 22 (1969), 270-276. Zbl 0201.11002, MR 0241739 |
Reference:
|
[4] E. A. Coddington, A. Dijksma: Adjoint subspaces in Banach spaces with applications to ordinary differential subspaces.Annali di Mat. Рurа ed Appl., CXVIII (1978), 1 - 118. Zbl 0408.47035, MR 0533601 |
Reference:
|
[5] R. Conti: On ordinary differential equations with interface conditions.J. Diff. Eq. 4 (1968), 4-11. Zbl 0157.14104, MR 0218642, 10.1016/0022-0396(68)90045-4 |
Reference:
|
[6] A. Gonelli: Un teorema di esistenza per un problema di tipo interface.Le Matematiche, 22 (1967), 203-211. MR 0240380 |
Reference:
|
[7] K. Jörgens: Lineare Integraloperatoren.В. G. Teubner Stuttgart, 1970. MR 0461049 |
Reference:
|
[8] J. L. Kelley, I. Namioka: Linear Topological Spaces.Van Nostrand, Princeton, New Jersey, 1963. Zbl 0115.09902, MR 0166578 |
Reference:
|
[9] A. M. Krall: Differential operators and their adjoints under integral and multiple point boundary conditions.J. Diff. Eq. 4 (1968), 327-336. Zbl 0165.42702, MR 0230968, 10.1016/0022-0396(68)90019-3 |
Reference:
|
[10] V. P. Maksimov: The property of being Noetherian of the general boundary value problem for a linear functional differential equation.(in Russian), Diff. Urav. 10 (1974), 2288-2291. MR 0361355 |
Reference:
|
[11] V. P. Maksimov, L. F. Rahmatullina: A linear functional-differential equation that is solved with respect to the derivative.(in Russian) Diff. Urav. 9 (1973), 2231-2240. MR 0333397 |
Reference:
|
[12] I. P. Natanson: Theory of Functions of a Real Variable.Frederick Ungar, New York. MR 0067952 |
Reference:
|
[13] J. V. Parhimovič: Multipoint boundary value problems for linear integro-differential equations in the class of smooth functions.(in Russian), Diff. Urav. 8 (1972), 549-552. MR 0298370 |
Reference:
|
[14] J. V. Parhimovič: The index and normal solvability of a multipoint boundary value problem for an integro-differential equation.(in Russian), Vesci Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, 1972, 91-93. MR 0305154 |
Reference:
|
[15] Št. Schwabik: Differential equations with interface condtions.Časopis pěst. mat. 105 (1980), 391-408. MR 0597916 |
Reference:
|
[16] Št. Schwabik M. Tvrdý, O. Vejvoda: Differential and Integral Equations: Boundary Value Problems and Ajoints.Academia, Praha, 1979. MR 0542283 |
Reference:
|
[17] F. W. Stallard: Differential systems with interface conditions.Oak Ridge Nat. Lab. Publ. No. 1876 (Physics). |
Reference:
|
[18] M. Tvrdý: Linear functional-differential operators: normal solvability and adjoints.Colloquia Mathematica Soc. János Bolyai, 15, Differential Equations, Keszthely (Hungary), 1975, 379-389. MR 0482357 |
Reference:
|
[19] M. Tvrdý: Linear boundary value type problems for functional-differential equations and their adjoints.Czech. Math. J. 25 (100), (1975), 37-66. MR 0374609 |
Reference:
|
[20] M. Tvrdý: Boundary value problems for generalized linear differential equations and their adjoints.Czech. Math. J. 23 (98) (1973), 183-217. MR 0320417 |
Reference:
|
[21] A Zettl: Adjoint and self-adjoint boundary value problems with interface conditions.SIAM J. Appl. Math. 16 (1968), 851-859. Zbl 0162.11201, MR 0234049, 10.1137/0116069 |
. |