Previous |  Up |  Next

Article

Title: On the transformation theory of ordinary second-order linear symmetric differential expressions (English)
Author: Everitt, William Norrie
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 32
Issue: 2
Year: 1982
Pages: 275-306
Summary lang: Russian
.
Category: math
.
MSC: 34A25
MSC: 34B20
idZBL: Zbl 0526.34026
idMR: MR654062
DOI: 10.21136/CMJ.1982.101802
.
Date available: 2008-06-09T14:48:14Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101802
.
Reference: [1] С. D. Ahlbrandt: Disconjugacy criteria for self-adjoint differential systems.J. Diff. Equations 6 (1969), 271-295. Zbl 0175.09301, MR 0244541, 10.1016/0022-0396(69)90018-7
Reference: [2] N. I. Akhiezer, I. M. Glazman: Theory of linear operators in Hilbert space: Volume I.(Ungar; New York, 1961). MR 0264420
Reference: [3] F. V. Atkinson: Discrete and continuous boundary problems.(Academic Press; New York, 1964). Zbl 0117.05806, MR 0176141
Reference: [4] C. Bennewitz, W. N. Everitt: Some remarks on the Titchmarsh-Weyl $m$-coefficient.In: Tribute to Åke Pleijel: Proceedings of the Pleijel Conference, University of Uppsala (1979), 49-108. (Published by the Department of Mathematics, University of Uppsala, Sweden, in 1980).
Reference: [5] G. Birkhoff, Gian-Carlo Rota: Ordinary differential equations.(Ginn and Company, New York, 1962). MR 0138810
Reference: [6] O. Borůvka: Linear differential transformations of the second order.(English Universities Press; London, 1971; translated from the German edition of 1967). MR 0463539
Reference: [7] N. Dunford, J. T. Schwartz: Linear operators: Part II.(Interscience Publishers; New York, 1963). Zbl 0128.34803, MR 0188745
Reference: [8] M. S. P. Eastham: Theory of ordinary differential equations.(Van Nostrand Reinhold Company; London, 1970). Zbl 0195.37001
Reference: [9] M. S. P. Eastham: The spectral theory of periodic differential equations.(Scottish Academic Press; Edinburgh, 1973). Zbl 0287.34016
Reference: [10] W. N. Everitt: On a property of the $m$-coefficient of a second-order linear differential equation.J. London Math. Soc. (2) 4 (1972), 443-457. Zbl 0262.34012, MR 0298104
Reference: [11] W. N. Everitt: Integral inequalities and the Liouville transformation.Lecture Notes in Mathematics 415 (1974), 338-352. (Springer-Verlag; Heidelberg, 1974; edited by I. M. Michael and B. D. Sleeman). Zbl 0307.34013, MR 0419919, 10.1007/BFb0065546
Reference: [12] W. N. Everitt: A note on the Dirichlet condition for second-order differential expressions.Canadian J. Math. XXVII (1916), 312-320. MR 0430391
Reference: [13] W. N. Everitt: A general integral inequality associated with certain ordinary differential operators.Quaestiones Mathematicae 2 (1978), 479-494. Zbl 0396.26006, MR 0486761, 10.1080/16073606.1978.9631547
Reference: [14] W. N. Everitt M. Giertz, J. B. McLeod: On the strong and weak limit-point classification of second-order differential expressions.Proc. London Math. Soc. (3) 29 (1974), 142-158. MR 0361255
Reference: [15] W. N. Everitt, S. G. Halvorsen: On the asymptotic form of the Titchmarsh-Weyl $m$-coefficient.Applicable Analysis 8 (1978), 153 - 169. Zbl 0406.34047, MR 0523952, 10.1080/00036817808839223
Reference: [16] W. N. Everitt, D. Race: On necessary and sufficient conditions for the existence of Carathéodory solutions of ordinary differential equations.Quaestiones Mathematicae 2 (1978), 507-512. Zbl 0392.34002, MR 0477222, 10.1080/16073606.1978.9631549
Reference: [17] W. N. Everitt, A. Zettl: Generalized symmetric ordinary differential expressions I: the general theory.Nieuw Archief voor Wiskunde (3) XXVII (1979), 363-397. Zbl 0451.34009, MR 0553264
Reference: [18] W. N. Everitt, A. Zettl: On a class of integral inequalities.J. London Math. Soc. (2) 17 (1978), 291-303. Zbl 0388.26007, MR 0477234, 10.1112/jlms/s2-17.2.291
Reference: [19] E. Hille: Lectures on ordinary differential equations.(Addison-Wesley; London, 1969). Zbl 0179.40301, MR 0249698
Reference: [20] D. B. Hinton: Limit point - limit circle criteria for $(py\sp{\prime} )\sp{\prime} +qy=\lambda ky$.Lecture Notes in Mathematics 415 (1974), 173 - 183. (Springer-Verlag; Heidelberg, 1974; edited by I. M. Michael and B. D. Sleeman). MR 0425236, 10.1007/BFb0065526
Reference: [21] E. L. Ince: Ordinary differential equations.(Dover Publications, Inc.: New York, 1956; original edition, 1926). MR 0010757
Reference: [22] H. Kalf: Remarks on some Dirichlet type results for semi-bounded Sturm-Liouville operators.Math. Ann. 210 (1974), 197-205. MR 0355177, 10.1007/BF01350583
Reference: [23] M. A. Naimark: Linear differential operators: Part II.(Ungar; New York, 1968). Zbl 0227.34020
Reference: [24] F. Neuman: On the Liouville transformation.Rendiconti di Matematica 3 (1970), 132-139. Zbl 0241.34005, MR 0273090
Reference: [25] F. Neuman: On a problem of transformations between limit-point and limit-circle differential equations.Proc. Royal. Soc. Edinburgh 72 (1973/74), 187-193. MR 0385226
Reference: [26] K. S. Ong: On the limit-point and limit-circle theory of a second-order differential equation.Proc. Royal Soc. Edinburgh 72 (1975), 245-256. MR 0393635
Reference: [27] Å. Pleijel: Generalized Weyl circles.Lecture Notes in Mathematics 415 (1974), 211 - 226. (Springer-Verlag; Heidelberg, 1974; edited by I. M. Michael and B. D. Sleeman). Zbl 0301.34025, MR 0422741, 10.1007/BFb0065531
Reference: [28] W. T. Reid: Ordinary differential equations.(Wiley and Sons, Inc.; New York, 1971). Zbl 0212.10901, MR 0273082
Reference: [29] E. C. Titchmarsh: Eigenfunction expansions; Part I.(Oxford University Press, 1962). MR 0176151
Reference: [30] R. Weinstock: Calculus of variations.(McGraw-Hill; New York, 1952), Zbl 0049.19503
Reference: [31] A. Zettl: Formally self-adjoint quasi-differential operators.Rocky Mountain J. of Math. 5 (1975), 453-474. MR 0379976, 10.1216/RMJ-1975-5-3-453
.

Files

Files Size Format View
CzechMathJ_32-1982-2_9.pdf 3.821Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo