| Title:
|
The Laplacian permanental polynomial for trees (English) |
| Author:
|
Merris, Russell |
| Language:
|
English |
| Journal:
|
Czechoslovak Mathematical Journal |
| ISSN:
|
0011-4642 (print) |
| ISSN:
|
1572-9141 (online) |
| Volume:
|
32 |
| Issue:
|
3 |
| Year:
|
1982 |
| Pages:
|
397-403 |
| Summary lang:
|
Russian |
| . |
| Category:
|
math |
| . |
| MSC:
|
05C05 |
| MSC:
|
05C50 |
| MSC:
|
15A15 |
| idZBL:
|
Zbl 0506.05044 |
| idMR:
|
MR669782 |
| DOI:
|
10.21136/CMJ.1982.101816 |
| . |
| Date available:
|
2008-06-09T14:49:12Z |
| Last updated:
|
2020-07-28 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/101816 |
| . |
| Reference:
|
[1] W. N. Anderson, Jr., T. D. Morley: Eigenvalues of the Laplacian of a graph.TR 71-45, Univ. of Md., College Park, MD. Zbl 0594.05046 |
| Reference:
|
[2] N. Biggs: Algebraic Graph Theory.Cambridge Univ. Press, 1974. Zbl 0284.05101, MR 0347649 |
| Reference:
|
[3] D. M. Cvetkovič M. Doob, H. Sachs: Spectra of Graphs.Academic Press, New York, 1980. MR 0572262 |
| Reference:
|
[4] A. K. Keľmans, V. M. Chelnokov: A certain polynomial of a graph and graphs with an extremal number of trees.J. Combinatorial Theory (B) 16 (1974), 197-214. Erratum, Ibid. 24 (1978), 375. MR 0345867, 10.1016/0095-8956(74)90065-3 |
| Reference:
|
[5] M. Fiedler: Algebraic connectivity of graphs.Czech. Math. J. 23 (98) (1973), 298 - 305. Zbl 0265.05119, MR 0318007 |
| Reference:
|
[6] M. Marcus, H. Minc: A Survey of Matrix Theory and Matrix Inequalities.Prindle, Weber and Schmidt, Boston, 1964. Zbl 0126.02404, MR 0162808 |
| Reference:
|
[7] R. Merris K. R. Rebman, W. Watkins: Permanental polynomials of graphs.Letters in Linear Algebra, Linear Algebra Appl. 38 (1981), 273-288. MR 0636042, 10.1016/0024-3795(81)90026-4 |
| Reference:
|
[8] H. Poincaré: Second complément à l'analysis situs.Proc. London Math. Soc. 32 (1901), 277-308. |
| Reference:
|
[9] I. Schur: Über endliche Gruppen und Hermitesche Formen.Math. Z. 1 (1918), 184-207. MR 1544291, 10.1007/BF01203611 |
| Reference:
|
[10] A. J. Schwenk: Almost all trees are cospectral, New Directions in Graph Theory.(edited by F. Harary), Academic Press, 1973. MR 0384582 |
| . |