Previous |  Up |  Next

Article

Title: On limits of $L_p$-norms of linear operators (English)
Author: Stavinoha, Pavel
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 32
Issue: 3
Year: 1982
Pages: 474-480
Summary lang: Russian
.
Category: math
.
MSC: 46L50
MSC: 46L99
idZBL: Zbl 0511.46062
idMR: MR669788
.
Date available: 2008-06-09T14:49:40Z
Last updated: 2016-04-06
Stable URL: http://hdl.handle.net/10338.dmlcz/101822
.
Reference: [1] L. Gross: Existence and uniqueness of physical ground states.J. Functional Analysis, 10 (1972), 52-109. Zbl 0237.47012, MR 0339722, 10.1016/0022-1236(72)90057-2
Reference: [2] A. Inoue: $L\sb{p}$-spaces and maximal unbounded Hilbert algebras.J. Math. Soc. Japan, 30 (1978), 667-686. MR 0513076, 10.2969/jmsj/03040667
Reference: [3] A. Katavolos: Isometric mappings of a non-commutative $L\sb{p}$-spaces.Canad. J. Math., 28 (1976), 1180-1186. MR 0417799, 10.4153/CJM-1976-117-3
Reference: [4] R. A. Kunze: $L\sb{p}$ Fourier transforms on locally compact unimodular groups.Trans. Amer. Math. Soc., 89 (1958), 519-540. MR 0100235
Reference: [5] E. Nelson: Notes on non-commutative integration.J. Functional Analysis, 15 (1974), 103-116. Zbl 0292.46030, MR 0355628, 10.1016/0022-1236(74)90014-7
Reference: [6] T. Ogasawara, K. Yoshinaga: A non-commutative theory of integration for operators.J. Sci. Hiroshima Univ., 18 (1955), 311-347. Zbl 0064.36705, MR 0070989
Reference: [7] A. R. Padmanabhan: Some dominated convergence theorems in a von Neumann algebra.Proc. Jap. Acad., 42 (1966), 347-350. Zbl 0166.11502, MR 0205099, 10.3792/pja/1195522031
Reference: [8] J. Peetre, G. Sparr: Interpolation and non-commutative integration.Ann. Math. Рurа Appl., 104 (1975), 187-207. Zbl 0309.46031, MR 0473869, 10.1007/BF02417016
Reference: [9] B. Russo: Isometrics of $L\sb{p}$-spaces associated with finite von Neumann algebras.Bulk Amer. Math. Soc., 74 (1968), 228-232. MR 0221294, 10.1090/S0002-9904-1968-11898-1
Reference: [10] B. Russo: The norm of the $L\sb{p}$-Fourier transform I, II, III.Trans. Amer. Math. Soc., 192 (1974), 293-305, Canad. J. Math., 28 (1976), 1121-1131, J. Functional Analysis, 30 (1978), 162-178. 10.1090/S0002-9947-1974-0435731-X
Reference: [11] I. E. Segal: A non-commutative extension of abstract integration.Ann. of Math., 57 (1953), 401-457, correction 58 (1953), 595-596. Zbl 0051.34202, MR 0054864
Reference: [12] I. E. Segal: Algebraic integration theory.Bull. Amer. Math. Soc., 71 (1965), 419-489. Zbl 0135.17402, MR 0178384, 10.1090/S0002-9904-1965-11284-8
Reference: [13] W. F. Stinespring: Integrations theorems for gages and duality for unimodular groups.Trans. Amer. Math. Soc., 90 (1959), 15-56. MR 0102761, 10.1090/S0002-9947-1959-0102761-9
Reference: [14] F. J. Yeadon: Non-commutative $L\sb{p}$-spaces.Proc. Cambridge Philos. Soc., 77 (1975), 91-102, MR 0353008
Reference: [15] F. J. Yeadon, P. E. Kopp: Inequalities for non-commutative $L\sb{p}$-spaces and an application.J. London Math. Soc., 19 (1979), 123-128. MR 0527743, 10.1112/jlms/s2-19.1.123
Reference: [16] P. K. Tarn: Isometries of $L\sb{p}$-spaces associated with semifinite von Neumann algebras.Trans. Amer. Math. Soc., 254 (1979), 339-354. MR 0539922
.

Files

Files Size Format View
CzechMathJ_32-1982-3_13.pdf 876.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo