Previous |  Up |  Next

Article

Title: A note on upper embeddable graphs (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 33
Issue: 1
Year: 1983
Pages: 37-40
Summary lang: Russian
.
Category: math
.
MSC: 05C10
MSC: 05C75
idZBL: Zbl 0518.05029
idMR: MR687415
DOI: 10.21136/CMJ.1983.101853
.
Date available: 2008-06-09T14:52:20Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101853
.
Reference: [1] M. Behzad G. Chartrand, L. Lesniak-Forster: Graphs & Digraphs.Prindle, Weber & Schmidt, Boston 1979. MR 0525578
Reference: [2] M. Jungerman: A characterization of upper embeddable graphs.Trans. Amer. Math. Soc. 241 (1978), 401-406. Zbl 0379.05025, MR 0492309
Reference: [3] L. Nebeský: A new characterization of the maximum genus of a graph.Czechoslovak Math. J. 31 (106) (1981), 604-613. MR 0631605
Reference: [4] E. A. Nordhaus В. M. Stewart, A. T. White: On the maximum genus of a graph.J. Combinatorial Theory 11B (1971), 258-267. MR 0286713, 10.1016/0095-8956(71)90036-0
Reference: [5] С. Payan, N. H. Xuong: Upper embeddability and connectivity of graphs.Discrete Mathematics 27 (1979), 71 - 80. Zbl 0407.05028, MR 0534954, 10.1016/0012-365X(79)90070-0
Reference: [6] R. D. Ringeisen: Survey of results on the maximum genus of a graph.J. Graph Theory 3 (1979), 1-13. Zbl 0398.05029, MR 0519169, 10.1002/jgt.3190030102
Reference: [7] G. Ringel: Map Color Theorem.Springer-Verlag, Berlin 1974. Zbl 0287.05102, MR 0349461
Reference: [8] N. H. Xuong: How to determine the maximum genus of a graph.J. Combinatorial Theory 26B (1979), 217-225. Zbl 0403.05035, MR 0532589, 10.1016/0095-8956(79)90058-3
.

Files

Files Size Format View
CzechMathJ_33-1983-1_6.pdf 493.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo