Previous |  Up |  Next

Article

Title: On differentiation of metric projections in finite dimensional Banach spaces (English)
Author: Zajíček, Luděk
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 33
Issue: 3
Year: 1983
Pages: 325-336
.
Category: math
.
MSC: 41A65
MSC: 46B20
idZBL: Zbl 0551.41048
idMR: MR718916
DOI: 10.21136/CMJ.1983.101883
.
Date available: 2008-06-09T14:54:47Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101883
.
Reference: [1] E. Asplund: Differentiability of the metric projection in finite-dimensional Euclidean space.Proc. Amer. Math. Soc. 38 (1973), 218-219. Zbl 0269.52002, MR 0310150
Reference: [2] J. Dieudonné: Éléments d'analyse, Tome I: Fondements de l'analyse moderne.Paris 1972.
Reference: [3] P. Erdös: On the Hausdorff dimension of some sets in Euclidean space.Bull. Amer. Math. Soc. 52 (1946), 107-109. MR 0015144, 10.1090/S0002-9904-1946-08514-6
Reference: [4] H. Federer: Geometric Measure Theory.Springer-Verlag, New York 1969. Zbl 0176.00801, MR 0257325
Reference: [5] V. Jarník: Differential Calculus II.Prague 1956 (Czech).
Reference: [6] P. S. Kenderov: Points of single-valuedness of multivalued monotone mappings in finite dimensional spaces.Serdica 2 (1976), 160-164. Zbl 0346.47044, MR 0477890
Reference: [7] S. V. Konjagin: Approximation properties of arbitrary sets in Banach spaces.Dokl. Akad. Nauk SSSR, 239 (1978), No. 2, 261-264 (Russian). MR 0493113
Reference: [8] J. B. Kruskal: Two convex counterexamples: A discontinuous envelope function and a nondifferentiable nearest-point mapping.Proc. Amer. Math. Soc. 23 (1969), 697-703. Zbl 0184.47401, MR 0259752, 10.1090/S0002-9939-1969-0259752-9
Reference: [9] E. J. Mc Shane: Extension of range of functions.Bull. Amer. Math. Soc. 40 (1934), 837-842. MR 1562984, 10.1090/S0002-9904-1934-05978-0
Reference: [10] F. Mignot: Contrôle dans les inéquations variatonelles Elliptiques.J. Functional Analysis 22 (1976), 130-185. MR 0423155, 10.1016/0022-1236(76)90017-3
Reference: [11] C. J. Neugebauer: A theorem on derivatives.Acta Sci. Math. (Szeged). 23 (1962), 79-81. Zbl 0105.04602, MR 0140624
Reference: [12] R. T. Rockafellar: Convex Analysis.Princeton 1970. Zbl 0193.18401, MR 0274683
Reference: [13] S. Saks: Theory of the Integral.New York 1937. Zbl 0017.30004
Reference: [14] S. Stečkin: Approximation properties of sets in normed linear spaces.Rev. Math. Pures Appl. 8 (1963), 5-18 (Russian). MR 0155168
Reference: [15] Z. Zahorski: Sur l'ensemble des points de nondérivabilité d'une fonction continue.Bull. Soc. Math. France, 74 (1946), 147-178. MR 0022592, 10.24033/bsmf.1381
Reference: [16] L. Zajíček: On the points of multivaluedness of metric projections in separable Banach spaces.Comment. Math. Univ. Carolinae 19 (1978), 513 - 523. MR 0508958
.

Files

Files Size Format View
CzechMathJ_33-1983-3_1.pdf 1.545Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo