Previous |  Up |  Next

Article

Title: On Besov-Hardy-Sobolev spaces of analytic functions in the unit disc (English)
Author: Oswald, P.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 33
Issue: 3
Year: 1983
Pages: 408-426
.
Category: math
.
MSC: 30D55
MSC: 42A10
MSC: 46E35
idZBL: Zbl 0594.46027
idMR: MR718924
DOI: 10.21136/CMJ.1983.101891
.
Date available: 2008-06-09T14:55:25Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101891
.
Reference: [1] R. E. Edwards G. I. Gaudry: Littlewood-Paley and multiplier theory.Springer, Berlin-Heidelberg-New York, 1977. MR 0618663
Reference: [2] С. Fefferman E. M. Stein: Some maximal inequalities.Amer. J. Math., 93 (1971), 107- 115. MR 0284802, 10.2307/2373450
Reference: [3] С. Fefferman E. M. Stein: $H^p$ spaces of several variables.Acta Math., 129 (1972), 136- 193. MR 0447953
Reference: [4] T. M. Flett: On an extension of absolute summability and some theorems of Littlewood and Paley.Proc. Lond. Math. Soc., 7 (1957), 113-141. Zbl 0109.04402, MR 0086912, 10.1112/plms/s3-7.1.113
Reference: [5] T. M. Flett: Mean values of power series.Рас. J. Math., 25 (1968), 463 - 494. Zbl 0162.10002, MR 0229807
Reference: [6] T. M. Flett: Lipschitz spaces of functions on the circle and the disc.J. Math. Anal. Appl., 39 (1972), 125-158. Zbl 0253.46084, MR 0313779, 10.1016/0022-247X(72)90230-2
Reference: [7] V. I. Ivanov: Direct and inverse theorems of approximation theory in the metric $L_p$ for $0 < p < 1$.Mat. Zametki, 18 (1975), 641 - 658 (in Russian). MR 0412710
Reference: [8] S. M. Nikolskij: Approximation of functions of several variables and imbedding theorems.Nauka, Moskva, 1977 (in Russian). MR 0506247
Reference: [9] P. Oswald: Approximation by splines in the metric $L_p$, $0 < p < 1$.Math. Nachr., 94 (1980), 69-96 (in Russian). MR 0582521
Reference: [10] J. Peetre: New thoughts on Besov spaces.Duke Univ. Math. Ser., Durham, 1976. Zbl 0356.46038, MR 0461123
Reference: [11] J. L. Rubio de Francia: Vector valued inequalities for Fourier series.Proc. Amer. Math. Soc., 78 (1980), 525-528. MR 0556625
Reference: [12] H.-J. Schmeisser W. Sickel: On strong summability of multiple Fourier series and smoothness properties of functions.Anal. Math., 8 (1982), 57-70. MR 0662704, 10.1007/BF02073772
Reference: [13] E. M. Stein: A maximal function with applications to Fourier series.Ann. Math., 68 (1958), 584-603. Zbl 0085.05602, MR 0100197, 10.2307/1970157
Reference: [14] E. M. Stein: Singular integrals and differentiability properties of functions.Princ. Univ. Press, Princeton, 1970. Zbl 0207.13501, MR 0290095
Reference: [15] E. M. Stein G. Weiss: Introduction to Fourier analysis in Euclidean spaces.Princ. Univ. Press, Princeton, 1971. MR 0304972
Reference: [16] E. A. Storoženko: Approximation of functions of the class $H^p$, $0 < p < 1$.Mat. Sbornik, 105 (147) (1978), 601-621 (in Russian). MR 0496597
Reference: [17] E. A. Storoženko: On theorems of Jackson type for $H^p$, $0 < p < 1$.Izv. Akad. Nauk SSSR, Ser. mat., 44 (1980), 948-962 (in Russian). MR 0587344
Reference: [18] E. A. Storoženko V. G. Krotov P. Oswald: Direct and inverse theorems of Jackson type in the spaces $L_p$, $0 < p < 1$.Mat. Sbornik, 98 (140) (1975), 395-415 (in Russian). MR 0402384
Reference: [19] M. H. Taibleson: On the theory of Lipschitz spaces of distributions on Euclidean $n$-space I, II.J. Math. Mech., 13 (1964), 407-479; 14 (1965), 821-839.
Reference: [20] W. Trebels: Multipliers for $(C, \alpha)$-bounded Fourier expansions in Banach spaces and approximation theory.Lect. Notes Math., 329, Springer, Berlin-Heidelberg-New York, 1973. MR 0510852, 10.1007/BFb0060959
Reference: [21] H. Triebel: Interpolation theory, function spaces, differential operators.Deut. Verl. Wiss., Berlin, 1978. Zbl 0387.46033, MR 0500580
Reference: [22] H. Triebel: Fourier analysis and function spaces.Teubner-Texte Math., Teubner, Leipzig, 1977. Zbl 0345.42003, MR 0493311
Reference: [23] H. Triebel: Spaces of Besov-Hardy-Sobolev type.Teubner-Texte Math., Teubner, Leipzig, 1978. Zbl 0408.46024, MR 0581907
Reference: [24] H. Triebel: Periodic spaces of Besov-Hardy-Sobolev type and related maximal functions for trigonometrical polynomials.Forschungsergebnisse FSU Jena, N/80/11, 1980.
Reference: [25] A. Zygmund: Trigonometric series.vol. 1, 2, Cambr. Univ. Press, Cambridge, 1959. Zbl 0085.05601, MR 0107776
.

Files

Files Size Format View
CzechMathJ_33-1983-3_9.pdf 1.831Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo