Previous |  Up |  Next

Article

Title: Voronoi's congruence via Bernoulli distributions (English)
Author: Porubský, Štefan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 34
Issue: 1
Year: 1984
Pages: 1-5
Summary lang: Russian
.
Category: math
.
MSC: 11B68
idZBL: Zbl 0543.10012
idMR: MR731974
DOI: 10.21136/CMJ.1984.101920
.
Date available: 2008-06-09T14:57:26Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101920
.
Reference: [1] W. Johnson: p-adic proofs of congruences for the Bernoulli numbers.J. Number Th. 7 (1975), 251-265. Zbl 0308.10006, MR 0376512, 10.1016/0022-314X(75)90020-7
Reference: [2] O. Grün: Eine Kongruenz für Bernoullische Zahlen.Jahresber. d. Deutschen Math. Verein. 50 (1940), 111-112. MR 0002332
Reference: [3] S. Lang: Cyclotomic Fields.Springer-Verlag, New York 1978. Zbl 0395.12005, MR 0485768
Reference: [4] J. Uspenski, M. Heaslet: Elementary Number Theory.McGraw-Hill, New York 1939.
Reference: [5] J. Slavutskij: Generalized Voronoi's congurence and the number of classes of ideals of an imaginary quadratic field II.(Russian), Izv. Vyšš. Učebn. Zavedenij, Math. 4 (53) (1966), 118-126. MR 0213328
Reference: [6] H. S. Vandiver: Symmetric functions formed by systems of elements of a finite algebra and their connection with Fermat's quotient and Bernoulli numbers.Ann. Math. 18 (1917), 105-114. MR 1503591, 10.2307/2007115
Reference: [7] H. S. Vandiver: On Bernoulli numbers and Fermat's last theorem.Duke Math. J. 3 (1937), 569-584. MR 1546011, 10.1215/S0012-7094-37-00345-4
Reference: [8] G. F. Voronoi: On Bernoulli numbers.(Russian), Commen. Charkov Math. Soc. 2 (1890), 129-148; or in Collected Papers, Vol. I, Publ. House Of the Ukrainian Acad. Sci., Kiev 1952.
.

Files

Files Size Format View
CzechMathJ_34-1984-1_1.pdf 528.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo