Title:
|
Note on spectral theory of nonlinear operators: Extensions of some surjectivity theorems of Fučík and Nečas (English) |
Author:
|
Pacella, Filomena |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
34 |
Issue:
|
1 |
Year:
|
1984 |
Pages:
|
28-45 |
. |
Category:
|
math |
. |
MSC:
|
35J65 |
MSC:
|
47H12 |
MSC:
|
47H15 |
idZBL:
|
Zbl 0546.47029 |
idMR:
|
MR731978 |
DOI:
|
10.21136/CMJ.1984.101924 |
. |
Date available:
|
2008-06-09T14:57:45Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/101924 |
. |
Reference:
|
[1] S. Fučík, Nečas J., Souček J., Souček V.: Spectral Analysis of nonlinear Operators.Springer Verlag. Berlin (1973). MR 0467421 |
Reference:
|
[2] Canfora A.: La teoria del grado topologico per una classe di operatori non compatti in spazi di Hilbert.Ric. di Mat. vol. XXVIII, 109- 142 (1979). Zbl 0428.47033 |
Reference:
|
[3] Pacella F.: Il grado topologico per operatori non compatti in spazi di Banach con il duale strettamente convesso.Ric. di Mat., vol. XXIX, 211-306 (1980). Zbl 0474.47030 |
Reference:
|
[4] Nečas J.: Sur I'aternative de Fredholm pour les operateurs non-lineaires avec applications aux problèmes aux limites.Ann. Scuola Norm. Sup. Pisa, 23, 331-345 (1969). MR 0267430 |
Reference:
|
[5] Fučík S.: Note on Fredholm alternative for nonlinear operators.Comment. Math. Univ. Carolinae, 72, 213-226 (1971). MR 0288641 |
Reference:
|
[6] Nečas J.: Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type.Comm. Math. Univ. Carolinae, 13, 109-120 (1972). MR 0305171 |
Reference:
|
[7] Petryshyn W. V.: Nonlinear equations involving noncompact operators.Proc. Symp. Pure Math. Vol. 18, Part I, Nonlinear functional Analysis, Rhode Island (1970). Zbl 0232.47070, MR 0271789 |
Reference:
|
[8] Adams R.: Sobolev spaces.Academic Press (1975). Zbl 0314.46030, MR 0450957 |
Reference:
|
[9] Schechter M.: Principles of functional analysis.Academic Press New York (1971). Zbl 0211.14501, MR 0445263 |
Reference:
|
[10] Pucci C., Talenti G.: Elliptic (second-order) Partial Differential Equations with Measurable Coefficients and Approximating Integral Equations.Advances in Mathematics, 19, 48-105 (1976). MR 0419989, 10.1016/0001-8708(76)90022-0 |
Reference:
|
[11] Chicco M.: Solvability of the Dirichlet problem in $H\sp{2},\,\sp{p}(\Omega )$\ for a class of linear second order elliptic partial differential equations.Boll. U.M.I. (4), 374-387 (1971). MR 0298209 |
. |