Previous |  Up |  Next

Article

Title: Upper embeddable factorizations of graphs (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 34
Issue: 3
Year: 1984
Pages: 432-438
Summary lang: Russian
.
Category: math
.
MSC: 05C10
MSC: 05C70
idZBL: Zbl 0583.05045
idMR: MR761426
DOI: 10.21136/CMJ.1984.101969
.
Date available: 2008-06-09T15:01:21Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101969
.
Reference: [1] M. Behzad G. Chartrand, and L. Lesniak-Foster: Graphs & Digraphs.Prindte, Weber & Schmidt, Boston 1979. MR 0525578
Reference: [2] N. P. Homenko N. A. Ostroverkhy, and V. A. Kiismenko: The maximum genus of a graph.(in Ukrainian, English summary). $\fi$-peretvorennya grafiv (N. P. Homenko, ed.) IM AN URSR, Kiev 1973, pp. 180-210. MR 0351870
Reference: [3] M. Jungerman: A characterization of upper embeddabie graphs.Trans. Amer. Math. Soc. 241 (1978), 401-406. MR 0492309
Reference: [4] С. St. J. A. Nash-Williams: Edge-disjoint spanning trees of finite graphs.J. London Math, Soc. 36 (1961), 445-450. Zbl 0102.38805, MR 0133253
Reference: [5] L. Nebeský: A new characterization of the maximum genus of a graph.Czechoslovak Math. J. 31 (706) (1981), 604-613. MR 0631605
Reference: [6] W. T. Tutte: On the problem of decomposing a graph into n connected factors.J. London Maih. Soc. 36 (1961), 221-230. Zbl 0096.38001, MR 0140438
Reference: [7] A. T. White: Graphs, Groups, and Surfaces.North-Holland, Amsterdam 1973. Zbl 0268.05102
Reference: [8] N. H. Xuong: How to determine the maximum genus of a graph.J. Combinatorial Theory 26 В (1979), 217-225. Zbl 0403.05035, MR 0532589, 10.1016/0095-8956(79)90058-3
.

Files

Files Size Format View
CzechMathJ_34-1984-3_12.pdf 921.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo