Previous |  Up |  Next

Article

References:
[1] P. Erdös R. Rado: A partition calculus in set theory. Bull. Amer. Math. Soc. 62 (1956), 427-489. DOI 10.1090/S0002-9904-1956-10036-0 | MR 0081864
[2] F. Freyd: On the concreteness of certain categories. (preprint). Zbl 0248.18008
[3] F. Frieda J. Sichler: Homomorphisms of integral domains of characteristic zero. Trans. AMS 225 (1977), 163-182. DOI 10.1090/S0002-9947-1977-0422382-9 | MR 0422382
[4] M. Gavalec D. Jakubíková: О sirine kategorii monounarnych algebr (Russian). Math. Slov. 28, 1978, 263-276. MR 0534994
[5] Z. Hedrlín A. Pultr: Relations (graphs) with given finitely generated semigroups. Mhf. f. Math. 69 (1965), 213-217. MR 0168684
[6] Z. Hedrlín A. Pultr: Symmetric relations (undirected graphs) with given semigroups. Mhf. f. Math. 69 (1965), 318-322. DOI 10.1007/BF01297617 | MR 0188082
[7] Z. Hedrlín A. Pultr: On full embeddings of categories of algebras. Illinois J. of Math. 10 (1966), 392-406. MR 0191858
[8] Z. Hedrlín A. Pultr: On categorical embeddings of topological structures into algebraic. Comment. Math. Univ. Carolinae 7 (1966), 377-400. MR 0202797
[9] Z. Hedrlín: Extensions of structures and full embeddings of categories. Actes du Congres International des Math. 1970, Tome 1, 319-322. MR 0419554
[10] Z. Hedrlín J. Lambek: How comprehensive is the category of semigroups?. J. Algebra 11, 195-212. DOI 10.1016/0021-8693(69)90054-4 | MR 0237611
[11] Z. Hedrlín J. Sichler: Any boundable binding category contains a proper class of mutually disjoint copies of itself. Alg. Universalis, 1 (1971), 97-103. DOI 10.1007/BF02944963 | MR 0285580
[12] V. Koubek: Set functors. Comment. Math. Univ. Carolinae, 12 (1971), 175-195. MR 0286860 | Zbl 0217.06803
[13] V. Koubek: On categories into which each concrete category can be embedded. Cahiers Topo, et Geo. Difî. 17 (1976), 33-57. MR 0417256 | Zbl 0336.18005
[14] V. Koubek: Graphs with given subgraph represent all categories. Comment. Math. Univ. Carolinae, 18 (1977), 115-127. MR 0457276
[15] V. Koubek: Graphs with given subgraphs represent all categories II. Comment. Math. Univ. Carolinae 19 (1978), 249-264. MR 0498229 | Zbl 0375.18004
[16] L. Kučera: Úplná vnoření struktur. (Czech), Thesis, Prague 1973.
[17] L. Kučera A. Pultr: On a mechanism of defining morphism in concrete categories. Cahiers Topo, et Geo. Diff. 13 (1973), 397-410. MR 0393173
[18] E. Mendelsohn: On a technique for representing semigroups and endomorphism semigroups of graphs with given properties. Semigroup Forum 4 (1972), 283 - 294. DOI 10.1007/BF02570800 | MR 0304533
[19] A. Pultr: On full embeddings of concrete categories with respect to forgetful functors. Comment. Math. Univ. Carolinae, 9 (1968), 281-305. MR 0240166 | Zbl 0175.29001
[20] A. Pultr: Eine Bemerkung über volle Einbettungen von Kategorien von Algebren. Math. Annalen 178 (1968), 78-82. DOI 10.1007/BF01350626 | MR 0230794 | Zbl 0174.30002
[21] V. Trnková: Some properties of set functors. Comment. Math. Univ. Carolinae 10 (1969), 323-352. MR 0252474
[22] P. Vopěnka A. Pultr Z. Hedrlin: A rigid relation exists on any set. Comment. Math. Univ. Carolinae 6 (1965), 149-155. MR 0183647
Partner of
EuDML logo