Previous |  Up |  Next

Article

References:
[1] R. L. Bishop R. J. Crittenden: Geometry of Manifolds. Academic Press, New York and London, 1964. MR 0169148
[2] J. A. Dieudonné J. B. Carrel: Invariant Theory, Old and New. Academic Press, New York and London, 1971. MR 0279102
[3] D. B. Epstein: Natural tensors on Riemannian manifolds. J. Differential Geom. 10 (1975), 631-645. MR 0415531 | Zbl 0321.53039
[4] I. Kolář: On the prolongations of geometric object fields. An. Sti. Univ. "Al. I. Cuza'' Iasi, 17 (1971), 437-446. MR 0305278
[5] D. Krupka: Differential Invariants. Lecture Notes, Faculty of Science, Purkyně University, Brno, 1979 (preprint).
[6] D. Krupka: Elementary theory of differential invariants. Arch. Math. XIV (1978), 207-214. MR 0512763 | Zbl 0428.58002
[7] D. Krupka: Local invariants of a linear connection. Colloquia Mathematica Societatis Janos Bolyai, 31. Differential Geometry, Budapest (Hungary), 1979, North-Holland, 1982, 349-369. MR 0706930
[8] D. Krupka: Reducibility theorems for differentiable liftings in fiber bundles. Arch. Math. XV (1979) 93-106. MR 0563142 | Zbl 0439.55009
[9] V. Mikolášová: On the functional independence of scalar invariants of curvature for dimensions n = 2, 3, 4. Math. Slovaca 32, 1982, 349-354. MR 0676570
[10] A. Nijenhuis: Natural bundles and their general properties. Differential Geometry, in honour of K. Yano, Kinokunyia, Tokyo, 1972, 317-334. MR 0380862 | Zbl 0246.53018
[11] R. S. Palais: Natural operations on differential forms. Trans. Amer. Math. Soc. 92 (1959), 125-141. DOI 10.1090/S0002-9947-1959-0116352-7 | MR 0116352 | Zbl 0092.30802
[12] R. S. Palais C. L. Terng: Natural bundles have finite order. Topology 16 (1977), 271 - 277. DOI 10.1016/0040-9383(77)90008-8 | MR 0467787
[13] P. Stredder: Natural differential operators on Riemannian manifolds and representations of the orthogonal and special orthogonal groups. J. Differential Geom. 10 (1975), 647-660. MR 0415692 | Zbl 0318.53046
[14] С. L. Terng: Natural vector bundles and natural differential operators. Amer. J. Math. 100 (1978), 775-828. DOI 10.2307/2373910 | MR 0509074 | Zbl 0422.58001
Partner of
EuDML logo