Previous |  Up |  Next

Article

Title: A theory on non-developable generalized ruled surfaces in the elliptic space $E^m$ (English)
Author: Thas, Charles
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 34
Issue: 4
Year: 1984
Pages: 609-618
Summary lang: Russian
.
Category: math
.
MSC: 53A25
MSC: 53A35
idZBL: Zbl 0565.53009
idMR: MR764443
DOI: 10.21136/CMJ.1984.101987
.
Date available: 2008-06-09T15:02:51Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101987
.
Reference: [1] Chen B. Y.: Geometry of submanifolds.Marcel Dekker, New York 1973. Zbl 0262.53036, MR 0353212
Reference: [2] Obata M.: The Gauss map of a minimal immersion.Journal of differential geometry, vol. 2, nr. 2, 217-223 (1968). MR 0234388
Reference: [3] Spivak M.: A comprehensive introduction to differential geometry.(vol.4). Publish or perish inc., Boston (1970). Zbl 0202.52201
Reference: [4] Thas C.: Een (lokale) studie van de (m + 1)-dimensionale variëteiten van de n-dimensionale euklidische ruimte $R^n$ (n ≥ 2m + 1 en m ≥ 1), beschreven door een ééndimensionale familie van m-dimensionale linéaire ruimten.(English summary). Meded. Kon. Acad. Wet., Lett., Sch. K. van België, jaargang XXXVI, nr. 4, 83 pp. (1974).
Reference: [5] Thas C.: A Gauss map on hypersurfaces of submanifolds in euclidean spaces.J. Korean Math. Soc., vol. 76, 1, 17-27, (1979). Zbl 0433.53014, MR 0543079
Reference: [6] Thas C.: A note on a class of submanifolds of a space form $R^m$ {k).Soochow J. Math., vol. 4, pp. 29-38 (1978). MR 0530536
Reference: [7] Thas C.: On submanifolds of a Riemannian manifold M containing a hypersurface which is totally geodesic in M and applications.Resultate der Mathematik, Vol, 5, pp. 1-10, (1983). Zbl 0531.53001, MR 0732912
.

Files

Files Size Format View
CzechMathJ_34-1984-4_12.pdf 1.338Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo