Title:
|
Reduction of Baire-measurability to uniform continuity (English) |
Author:
|
Frolík, Zdeněk |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
35 |
Issue:
|
1 |
Year:
|
1985 |
Pages:
|
43-51 |
Summary lang:
|
Russian |
. |
Category:
|
math |
. |
MSC:
|
54H05 |
idZBL:
|
Zbl 0583.54023 |
idMR:
|
MR779334 |
DOI:
|
10.21136/CMJ.1985.101995 |
. |
Date available:
|
2008-06-09T15:03:21Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/101995 |
. |
Reference:
|
[Fe] J. P. Ferrier: Paracompacité et espaces uniformes.Fund. Math. LXII (1968), 7-30. Zbl 0155.50501, MR 0226585, 10.4064/fm-62-1-7-30 |
Reference:
|
[Fre] D. K. Fremlin: $K$-analytic spaces with metrizable compacta.Mathematika 24 (1977), 257-261. MR 0515109, 10.1112/S0025579300009165 |
Reference:
|
[Fro\sb{1}] Z. Frolík: A measurable map with analytic domain and metrizable range is quotient.Bull. Amer. Math. Soc. 76 (1970), 1112-1117. MR 0265539, 10.1090/S0002-9904-1970-12584-8 |
Reference:
|
[Fro\sb{2}] Z. Frolík: Four functors into paved spaces.In: Seminar Uniform Spaces 1973 - 4, Matematický ústav ČSAV, Praha 1975, pp. 27-72. MR 0440511 |
Reference:
|
[Fro\sb{3}] Z. Frolík: On $\sigma$-dd-simple spaces.Submitted to Čas. pěst. mat. |
Reference:
|
[F-H\sb{1}] Z. Frolík P. Holický: Decomposability of completely Suslin-additive families.Proc. Amer. Math. Soc. 82 (1981), 359-365. MR 0612719, 10.1090/S0002-9939-1981-0612719-6 |
Reference:
|
[F-H\sb{2}] Z. Frolík P. Holický: Analytic and Luzin spaces (non-separable case).Topology and appl. |
Reference:
|
[F-H\sb{3}] Z. Frolík P. Holický: Applications of Luzinian separation principles (non-separable case).Fund. Math. CXVII (1983), 165-185. MR 0719837, 10.4064/fm-117-3-165-185 |
Reference:
|
[H\sb{1}] R. W. Hansell: On the non-separable theory of Borel and Suslin sets.Bull. Amer. Math. Soc. 78 (1972), 236-241. MR 0294138, 10.1090/S0002-9904-1972-12936-7 |
Reference:
|
[H\sb{2}] R. W. Hansell: On the non-separable theory of k-Borel and Suslin sets.Gen. Top. Appl. 3 (1973), 161-195. MR 0319170 |
Reference:
|
[K-P] J. Kaniewski R. Pol: Borel-measurable selectors for compact-valued mappings in the non-separable case.Bull. Acad. Polon. Sci. Ser. Math. 23 (1975), 1043-50. MR 0410657 |
Reference:
|
[T] M. Talagrand: Sur la structure Borélienne des espaces analytiques.Bull. Sc. Math. 101 (1977), 415-422. Zbl 0368.28003, MR 0500093 |
. |