Previous |  Up |  Next

Article

Title: Dimension of the sum of several copies of a graph (English)
Author: Křivka, Pavel
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 35
Issue: 3
Year: 1985
Pages: 347-354
Summary lang: Russian
.
Category: math
.
MSC: 05C99
idZBL: Zbl 0599.05060
idMR: MR803030
DOI: 10.21136/CMJ.1985.102025
.
Date available: 2008-06-09T15:05:39Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102025
.
Reference: [1] J. Denes A. D. Keedwell: Latin squares and their application.Akademiai Kiado, Budapest, 1974. MR 0351850
Reference: [2] P. Křivka: The dimension of odd cycles and cartesian cubes.Coll. Math. Soc. János Bolyai 25. Alg. meth. in graph th., Szeged 1978, 435 - 443. MR 0642056
Reference: [3] P. Křivka: Dimension of the sum of two copies of a graph.Czech. Math. J., 31 (106), 1981, 514-520. MR 0631599
Reference: [4] L. Lovasz J. Nešetřil A. Pultr: On a product dimension of graphs.J. Comb. Theory, 1981, B37, 5, 231-256.
Reference: [5] J. Nešetřil A. Pultr: A Dushnik-Miller type dimension of graphs and its complexity.Proc. of the Conf. on Fundam. of Comp. Theory, Lecture Notes in Comp. Sc. 56, Springer 1977, 482-493. MR 0491363
Reference: [6] J. Nešetřil A. Pultr: Product and other representations of graphs and related characteristics.Coll. Math. Soc. János Bolyai 25. Alg. meth. in graph th., Szeged 1978. MR 0642062
Reference: [7] J. Nešetřil V. Rödl: A simple proof of the Galvin-Ramsey property of graphs and a dimension of a graph.Discrete Math. 23 (1978), 49-55. MR 0523311, 10.1016/0012-365X(78)90186-3
Reference: [8] S. Poljak V. Rödl: Orthogonal partitions and covering of graphs.Czech. Math. J. 30 (105), 1980, 475-485. MR 0583626
.

Files

Files Size Format View
CzechMathJ_35-1985-3_2.pdf 1.030Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo