[2] G. Duvant J.-L. Lions: Les inéquations en mechanique et on physique. Dunod, Paris 1972.
[3] S. Fučík A. Kufner:
Nonlinear differential equations. Elsevier, Scient. Publ. Соmр., Amsterdam-Oxford-New York 1980.
MR 0558764
[4] P. Drábek M. Kučera M. Míková:
Bifurcation points of reaction-diffusion systems with unilateral conditions. Czechoslovak Math. J. 35 (110) 1985, 639-660.
MR 0809047
[5] P. Drábek M. Kučera:
Reaction-diffusion systems: Destabilizing eifect of unilateral conditions. To appear.
MR 0969497
[6] H. Kielhöfer:
Stability and semilinear evolution equations in Hilbert space. Arch. Rational Mech. Anal., 57 (1974), 150-165.
DOI 10.1007/BF00248417 |
MR 0442405
[7] M. Kučera:
A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory. Čas. pěst. mat. 104 (1979), 389-411.
MR 0553173
[8] M. Kučera:
A new method for obtaining eigenvalues of variational inequalities. Operators with multiple eigenvalues. Czechoslovak Math. J., 32 (107) 1982, 197-207.
MR 0654056
[9] M. Kučera:
Bifurcations points of variational inequalities. Czechoslovak Math. J. 32 (107) 1982, 208-226.
MR 0654057
[10] M. Kučera: Bifurcation points of inequalities of reaction-diffusion type. To appear.
[11] M. Kučera J. Neustupa:
Destabilizing effect of unilateral conditions in reaction-diffusion systems. Comment. Math. Univ. Carol., 27 (1986), 171-187.
MR 0843429
[12] J. Nečas:
Les méthodes directes en théorie des équations elliptiques. Academia, Praha 1967.
MR 0227584
[15] E. H. Zarantonello: Projections on convex sets in Hilbert space and spectral theory. In "Contributions to Nonlinear Functional Analysis". (edited by E. H. Zarantonello). Academic Press, New York, 1971.
[16] E. Zeidler: Vorlesungen über nichtlineare Funktionalanalysis $l$-Fixpunktsätze. TeubnerTexte zur Mathematik, Leipzig 1976.