Previous |  Up |  Next

Article

References:
[1] J. Boman: Differentiability of a function and of its composition with functions of one variable. Math. Scand. 20, 1967, p. 249-268. MR 0237728
[2] D. B. A. Epstein W. P. Thurston: Transformation groups and natural bundles. Proc. London Math. Soc. III, 38 (1979), 219-238. MR 0531161
[3] A. Dekret: Prolognation of natural bundles. to appear. MR 1409884
[4] A. Frölicher: Durch Monoide erzeugte kartesisch abgeschlossene Kategorien. Seminarber. Fachbereich Math. Fernuniv. Hagen 5 (1979), pp. 7-48.
[5] A. Frölicher: Smooth structures. Category theory (Gummersbach, 1981), pp. 69-81, Lecture Notes in Math., 962, Springer, Berlin-New York, 1982. DOI 10.1007/BFb0066887 | MR 0682945
[6] A. Frölicher: Cartesian closed categories and analysis of smooth maps. Proceedings of the workshop on categories and foundation of continuum physics, Buffalo, May 17-21, 1982, to appear. MR 0842916
[7] J. Janyška: Geometrical properties of prolongation functors. Čas. pěst. mat., 110 (1985), 77-86. MR 0791280
[8] J. Janyška: Geometrical prolongation functors and natural operations with connections. (in Czech), Ph. D. thesis.
[9] I. Kolář: Canonical forms on the prolongations of principal fibre bundles. Rev. Roumaine math. Pures Appl., 1971, 76, 1091-1106. MR 0301668
[10] I. Kolář: Prolongations of generalized connections. Colloquia mathematica societatis János Bolyai, 31. Differential Geometry, Budapest 1979, pp. 317-325. MR 0706928
[11] I. Kolář: Higher order absolute differentiation with respect to generalized connections. Differential geometry, Banach center publications, Vol. 12, Warsaw 1984, pp. 153-161. MR 0961078
[12] D. Krupka: Elementary theory of differential invariants. Arch. Math. (Brno), XIV (1978), 207-214. MR 0512763 | Zbl 0428.58002
[13] A. Nijenhuis: Natural bundles and their general properties. Diff. Geom. in honour of K. Yano, Tokyo 1972, 317-334. MR 0380862 | Zbl 0246.53018
[14] R. S. Palais C. L. Terng: Natural bundles have finite order. Topology 16 (1977), 211 - 211. MR 0467787
Partner of
EuDML logo