Previous |  Up |  Next

Article

Title: On generalized periodic solutions of some nonlinear telegraph and beam equations (English)
Author: Drábek, Pavel
Author: Lupo, Daniela
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 36
Issue: 3
Year: 1986
Pages: 434-449
Summary lang: Russian
.
Category: math
.
MSC: 35B10
MSC: 35L70
idZBL: Zbl 0628.35006
idMR: MR847771
DOI: 10.21136/CMJ.1986.102104
.
Date available: 2008-06-09T15:11:35Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102104
.
Reference: [1] P. Drábek: Nonlinear noncoercive equations and applications.Zeitschrift für Analysis und ihre Anwendungen, BdI(5) (1983), 53-65. MR 0720043
Reference: [2] S. Fučík: Nonlinear noncoercive problems.In: "Conference del Seminario di Matematica dell'Università di Bari", No. 166, Bari 1979, 301-353. MR 0585118
Reference: [3] S. Fučík J. Mawhin: Generalized periodic solutions of nonlinear telegraph equations.Nonlin. Anal. T.M.A., 2, (1978), 604-617. MR 0512156
Reference: [4] P. Krejčí: On solvability of equations of the 4th order with jumping nonlinearities.Čas. pěst. mat., 108 (1983), 29-39. MR 0694138
Reference: [5] J. Mawhin: Periodic solutions of nonlinear telegraph equations.In: "Dynamical systems", Bednarek and Cesari eds., 193 - 210, Academic Press (1977). MR 0460914
Reference: [6] J. Mawhin J. Ward: Nonuniform non-resonance conditions in the periodic-Drichlet problem for semilinear wave equations with jumping non-linearities.Raport n. 19, Semin. de Math., Univ. de Louvain, 1983.
Reference: [7] A. E. Taylor: An Introduction to Functional Analysis.6th Ed., J. Wiley and Sons, New York, 1967. MR 0098966
Reference: [8] O. Vejvoda, al.: Partial differential equations: time periodic solutions.Sijshof Nordhoff, The Netherlands 1981.
Reference: [9] D. Kinderlehrer G. Stampacchia: An introduction to variational inequalities and their applications.Academic Press (1980). MR 0567696
Reference: [10] A. Manes A. M. Micheletti: Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine.Boll. U.M.I. 7 (1973) pp. 285-201. MR 0344663
Reference: [11] S. Fučík: Solvability of Nonlinear Equations and Boundary Value Problems.Society of Czech. Math. Phys. Prague (1980). MR 0620638
.

Files

Files Size Format View
CzechMathJ_36-1986-3_9.pdf 1.585Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo