Previous |  Up |  Next

Article

References:
[1] Arhangeľskii A. V.: Topological spaces and continuous mappings. Notes on topological groups. - Moscow State University, 1969. (In Russian).
[2] Arhangeľskii A. V.: Cardinal invariants of topological groups. Imbeddings and condensations. - Soviet Math. Dokl., 1979, v. 20, N. 4, p. 783--787. MR 0553825
[3] Arhangeľskii A. V.: On linear homomorphisms of functional spaces. - Dokl. Acad. Sci. URSS, 1982, V. 264, N 6, p. 1286-1292. (In Russian).
[4] Arhangeľskii A. V.: Spaces of functions endowed with pointwise convergence topology and compact sets. - Uspekhy Math. Sci., 1984, v. 39, N 5, p. 11 - 50. (In Russian). MR 0764007
[5] Blasco J. L.: On $\mu$-spaces and $k\sb{R}$-spaces. - Proc. Amer. Math. Soc., 1977, v. 67, N 1, p. 179-186. MR 0464152
[6] Chigogidze A. Ch.: On $\chi$-metrizable spaces. - Uspekhy Math. Sci., 1982, v. 37, N2, p. 241-242. (In Russian). MR 0650791
[7] Comfort W. W., Ross K. A.: Pseudocompactness and uniform continuity in topological groups. - Pacific J. Math., 1966, v. 16, N 3, pp. 483-496. MR 0207886 | Zbl 0214.28502
[8] Comfort W. W., Saks V.: Countably compact groups and finest totally bounded uniformities. - Pacific J. Math., 1973, v. 49, N 1, p. 33-44. MR 0372104
[9] Comfort W. W., Soundararajan T.: Pseudocompact group topologies and totally dense subgroups. - Pacific J. Math., 1982, v. 100, N 1, p. 61-84. MR 0661441 | Zbl 0451.22002
[10] Comfort W. W., Robertson L. C.: Extremal phenomena in certain classes of totally bounded groups. - Preprint. MR 0959432 | Zbl 0703.22002
[11] Douwen E. K. van: The product of two countably compact topological groups. - Trans. Amer. Math. Soc., 1980, v. 262, N 2, p. 417-427. DOI 10.1090/S0002-9947-1980-0586725-8 | MR 0586725
[12] Engelking R.: General Topology. - PWN, Warszawa, 1977. MR 0500780 | Zbl 0373.54002
[13] Grant G. L.: Topological groups which satisfy an open mapping theorem. - Pacific J. Math., 1977, v. 68, N2, p. 411-423. MR 0466395 | Zbl 0375.22002
[14] Hajnal A., Juhász I.: A separable normal topological group need not be Lindelöf. - Gen. Top. Appl., 1976, v. 6, p. 199-205. MR 0431086
[15] Hewitt E., Ross K. A.: Abstract harmonic analysis, vol. I. - Springer-Verlag, Berlin- Göttingen-Heidelberg, 1963. MR 0551496 | Zbl 0115.10603
[16] Matveev M. V.: Pseudocompact spaces and spaces closed to being pseudocompact. - Dissertation, Moscow, 1984. (In Russian).
[17] Noble N.: Countably compact and pseudocompact products. - Czechoslovak Math. J., 1969, v. 19, N2, p. 390-397. MR 0248717 | Zbl 0184.47706
[18] Noble N: The continuity of functions on Cartesian products. - Trans. Amer. Math. Soc., 1970, v. 149, p, 187-198. MR 0257987 | Zbl 0229.54028
[19] Novák J.: On the Cartesian product of two compact spaces. - Fund. Math., 1953, v. 40, p. 106-112. MR 0060212
[20] Pontrjagin L. S.: Continuous groups. - Moscow, 1973. (In Russian). MR 0357673
[21] Roelcke W., Dierolf S.: Uniform structures on topological groups and their quotients. -- N. Y., Mc Graw-Hill Inc., 1981. MR 0644485 | Zbl 0489.22001
[22] Tkačenko M. G.: Some results on inverse spectra, II. - Comment. Math. Univ. Carol., 1981, V. 22, N4, p. 819-841. MR 0647029
[23] Tkačenko M. G.: Examples of connected left-separated spaces and topological groups. - Acta Math. Acad. Sci. Hungar, 1981, v. 38, N 3, p. 257-261. DOI 10.1007/BF01917540 | MR 0647345
[24] Tkačenko M. G.: Free topological groups and related topics. - Colloquia Math., 1983, v. 41, pp. 609-623. MR 0863943
[25] Ščepin E. V.: Topology of limit spaces of uncountable inverse spectra. - Uspekhy Math. Sci., 1976, V. 31, N 5, p. 191-226. (In Russian). MR 0464137
[26] Ščepin E. V.: Real-valued functions and canonical sets in Tychonoff products and topological groups. - Uspekhy Math. Sci., 1976, v. 31, N 6, p. 17-27. (In Russian). MR 0458358
[27] Ščepin E. V.: On $\chi$-metrizable spaces. - Izv. Acad. Sec. URSS, 1979, v. 43, N 2, p. 442-478. (In Russian). MR 0534603
[28] Uspenskiĭ V. V.: On continuous images of Lindelöf topological groups. - Dokl. Acad. Sci. URSS, 1985, V. 285, N 4, p. 824-827. (In Russian). MR 0821360
Partner of
EuDML logo