Previous |  Up |  Next

Article

References:
[1] S. Agmon A. Douglis L. Nirenberg: Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12 (1959), 623-727. DOI 10.1002/cpa.3160120405 | MR 0125307
[2] J. Franke: Regular elliptic boundary value problems in Besov and Triebel-Lizorkin spaces. The case $0

. Math. Nachr. (to appear). MR 1349041

[3] J. Franke: On the spaces $F\sb {pq}\sp s$ of Triebel-Lizorkin type: Pointwise multipliers and spaces on domains. Math. Nachr. 125 (1986), 29-68. MR 0847350
[4] J. Franke T. Runst: On the admissibility of function spaces of type $B\sp s\sb {p,q}$ and $F\sp s\sb {p,q}$. Boundary value problems for non-linear partial differential equations. Analysis Math. 13 (1987), 3-27. DOI 10.1007/BF01905928 | MR 0893032
[5] S. Fučík: Solvability of Nonlinear Equations and Boundary Value Problems. Soc. Czechoslovak Math. Phys., Prague 1980. MR 0620638
[6] S. Fučík A. Kufner: Nonlinear Differential Equations. Elsevier, Amsterdam 1980. MR 0558764
[7] P. Hess: On a theorem by Landesman and Lazer. Indiana Univ. Math. J. 23 (1974), 827-829. DOI 10.1512/iumj.1974.23.23068 | MR 0352687 | Zbl 0259.35036
[8] V. Klee: Leray-Schauder theory without local convexity. Math. Ann. 141 (1960), 281 - 285. DOI 10.1007/BF01360763 | MR 0131150 | Zbl 0096.08001
[9] E. M. Landesman A. C. Lazer: Nonlinear perturbation of linear elliptic boundary value problems at resonance. J. Math. Mech. 19 (1970), 609-623. MR 0267269
[10] J. Nečas: Sur l'Alternative de Fredholm pour les opérateurs non-linéaires avec application aux problèmes aux limites. Ann. Scuola Norm. Sup. Pisa 23 (1969), 331 - 345. MR 0267430
[11] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. MR 0227584
[ 12] J. Nečas: On the range of nonlinear operators with linear asymptotes which are not invertible. Comment. Math. Univ. Carolinae 14 (1973), 63 - 72. MR 0318995
[13] S. I. Pokhozhaev: The solvability of non-linear equations with odd operators. (Russian). Functionalnyi analys i prilož. 1 (1967), 66-73.
[14] T. Riedrich: Vorlesungen über nichtlineare Operatorengleichungen. Teubner-Texte Math., Teubner, Leipzig, 1976. MR 0467414 | Zbl 0332.47026
[15] T. Runst: Mapping properties of non-linear operators in spaces of type $B\sp s\sb {p,q}$ and $F\sp s\sb {p,q}$. Analysis Math. 12(1986), 313-346. DOI 10.1007/BF01909369 | MR 0877164
[16] H. Triebel: Spaces of Besov-Hardy-Sobolev Type. Teubner-Texte Math., Teubner, Leipzig, 1978. MR 0581907 | Zbl 0408.46024
[17] H. Triebel: Theory of Function Spaces. Akademische Verlagsgesellschaft Geest & Portig, Lepzig, 1983, und Birkhäuser, Boston, 1983. MR 0781540 | Zbl 0546.46028
[18] H. Triebel: On Besov-Hardy-Sobolev Spaces in domains and regular elliptic boundary value problems. The case $0

. Comm. Partial Differential Equations 3 (1978), 1083-1164. DOI 10.1080/03605307808820088 | MR 0512083 | Zbl 0403.35034

[19] H. Triebel: Mapping properties of Non-linear Operators Generated by $\Phi (u)=\vert u\vert \sp{\rho }$ and by Holomorphic $\Phi (u)$ in Function Spaces of Besov-Hardy-Sobolev Type. Boundary Value Problems for Elliptic Differential Equations of Type $\Delta u=f(x)+\Phi (u)$. Math. Nachr. 117 (1984), 193-213. DOI 10.1002/mana.3211170115 | MR 0755303
[20] S. A. Williams: A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem. J. Differential Equations 8 (1970), 580-586. DOI 10.1016/0022-0396(70)90031-8 | MR 0267267 | Zbl 0209.13003
[21] E. Zeidler: Vorlesungen über nichtlineare Functionalanalysis II - Monotone Operatoren. - Teubner-Texte Math., Teubner, Leipzig, 1977. MR 0473928
Partner of
EuDML logo