Previous |  Up |  Next

Article

Title: Continuous and compact imbeddings of weighted Sobolev spaces. I (English)
Author: Gurka, Petr
Author: Opic, Bohumír
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 38
Issue: 4
Year: 1988
Pages: 730-744
.
Category: math
.
MSC: 46E35
idZBL: Zbl 0676.46030
idMR: MR962916
DOI: 10.21136/CMJ.1988.102269
.
Date available: 2008-06-09T15:24:37Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102269
.
Reference: [1] Guzmán M.: Differentiation of integrals in $R\sp{n}$.Lecture Notes in Mathematics 481, Springer-Verlag, Berlin-Heidelberg-New York 1975. MR 0457661
Reference: [2] Kufner A.: Weighted Sobolev spaces.John Wiley & Sons, Chichester-New York- Brisbane-Toronto-Singapore 1985. Zbl 0579.35021, MR 0802206
Reference: [3] Kufner A., John O., Fučík S.: Function spaces.Academia Praha 1977. MR 0482102
Reference: [4] Kufner A., Opic В.: How to define reasonably weighted Sobolev spaces.Comment. Math. Univ. Carolinae, 25 (3) (1984), 537. Zbl 0557.46025, MR 0775568
Reference: [5] Lizorkin P. I., Otelbaev M.: Imbedding and compactness theorems for Sobolev type spaces with weights I, II.(Russian), Mat. Sb. (N.S.) 108 (150), (1979), No 3, 358-377, MR 80j : : 46054; 1J2 (154) (1980), No 1 (5), 56-85, MR 82i : 46051. MR 0530316
Reference: [6] Opic В.: Necessary and sufficient conditions for compactness of imbeddings in weighted Sobolev spaces.Časopis Pěst. Mat. (to appear).
Reference: [7] Opic В., Gurka P.: $A\sb r$-condition for two weight functions and compact imbeddings of weighted Sobolev spaces.Czechoslovak Math. J. 38(133) (1988), 611-617. Zbl 0676.46029, MR 0962905
Reference: [8] Zajaczkowski W.: On theorem of embedding for weighed Sobolev spaces.Bulletin of the Polish Academy of Sciences Mathematics, 32 (1985), No 3 - 4, 115-121. MR 0805024
.

Files

Files Size Format View
CzechMathJ_38-1988-4_18.pdf 1.336Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo