Previous |  Up |  Next

Article

Title: Shift-automorphism methods for inherently nonfinitely based varieties of algebras (English)
Author: Baker, Kirby A.
Author: McNulty, George F.
Author: Werner, Heinrich
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 39
Issue: 1
Year: 1989
Pages: 53-69
.
Category: math
.
MSC: 08B05
idZBL: Zbl 0677.08005
idMR: MR983483
DOI: 10.21136/CMJ.1989.102278
.
Date available: 2008-06-09T15:25:10Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102278
.
Reference: [1] K. A. Baker: Finite equational bases for finite algebras in congruence-distributive equational classes.Advances in Math. 24 (1977), 207-243. MR 0447074
Reference: [2] K. A. Baker G. McNulty, H. Werner: The finitely based varieties of graph algebras.preprint. MR 0911554
Reference: [3] G. Birkhoff: On the structure of abstract algebras.Proc. Camb. Philos. Soc. 31 (1935), 433-454. Zbl 0013.00105, 10.1017/S0305004100013463
Reference: [4] S. Burris, H. P. Sankappanavar: A Course in Universal Algebra.Graduate Texts in Mathematics v. 78, Springer Verlag, New York, 1981. Zbl 0478.08001, MR 0648287
Reference: [5] G. Grätzer: Universal Algebra.2nd. ed., Springer-Verlag, New York, 1979. MR 0538623
Reference: [6] J. Ježek: Nonfinitely based three-element idempotent groupoids.Algebra Universalis 20 (1985), 292-301. MR 0811690, 10.1007/BF01195139
Reference: [7] B. Jónsson: Topics in Universal Algebra.Lecture Notes in Mathematics vol. 250, Springer-Verlag, New York, 1972. MR 0345895, 10.1007/BFb0058648
Reference: [8] E. Kiss: A note on varieties of graph algebras.in the Proceedings of the Charleston Conference on Universal Algebra and Lattice Theory, S. Comer, ed., Lecture Notes in Mathematics # 1149, Springer-Verlag, New York, pp. 163-166. Zbl 0572.08009, MR 0823014
Reference: [9] R. L. Kruse: Identities satisfies by a finite ring.J. Algebra 26 (1971), 298-318. MR 0325678, 10.1016/0021-8693(73)90025-2
Reference: [10] I. V. L'vov: Varieties of associative rings I, II.Algebra and Logic 12, (1971), 150-167, 381-383. MR 0389973
Reference: [11] R. Lyndon: Identities in two-valued calculi.Trans. Amer. Math. Soc. 71 (1951), 457-465. Zbl 0044.00201, MR 0044470, 10.1090/S0002-9947-1951-0044470-3
Reference: [12] R. Lyndon: Identities in finite algebras.Proc. Amer. Math. Soc. 5 (1954), 8-9. Zbl 0055.02705, MR 0060482, 10.1090/S0002-9939-1954-0060482-6
Reference: [13] R. McKenzie: Equational bases for lattice theories.Math. Scand. 27 (1970), 24-38. Zbl 0307.08001, MR 0274353, 10.7146/math.scand.a-10984
Reference: [14] R. McKenzie: Finite equational bases for congruence modular algebras.preprint.
Reference: [15] G. McNulty: How to construct finite algebras which are not finitely based.in the Proceedings of the Charleston Conference on Universal Algebra and Lattice Theory, S. Comer, ed., Lecture Notes in Mathematics # 1149, Springer-Verlag, New York, 1985, pp. 167- 174. Zbl 0575.08005, MR 0823015
Reference: [16] G. McNulty, C. Shallon: Inherently nonfinitely based finite algebras, Universal Algebra and Lattice Theory.Lecture Notes in Mathematics vol. 1004, R. Freese and O. Garcia, eds., 206-231, Springer-Verlag, 1983. MR 0716184, 10.1007/BFb0063439
Reference: [17] V. L. Murskii: The existence in three-valued logic of a closed class with finite basis not having a finite complete set of identities.Dokl. Akad. Nauk. SSSR 163 (1965), 815-818; English Translation Soviet Math. Dokl. 6 (1965), 1020-1024. MR 0186539
Reference: [18] V. L. Murskii: On the number of $k$-element algebras with one binary operation without a finite basis of identitis.Problemy Kibernet. 35 (1979), 5-27. MR 0539884
Reference: [19] S. Oates, M. B. Powell: Identical relations in finite groups.J. Algebra 1 (1965), 11-39. MR 0161904, 10.1016/0021-8693(64)90004-3
Reference: [20] S. Oates-Williams: Graphs and universal algebras, Combinatorial Mathematics VIII.Lecture Notes in Mathematics vol. 884, K. MacAvaney, ed., 351-354, Springer-Verlag, 1981. MR 0641259, 10.1007/BFb0091831
Reference: [21] R. Park: A four-element algebra whose identities are not finitely based.Algebra Universalis 11 (1980), 255-260. Zbl 0449.08005, MR 0588218, 10.1007/BF02483103
Reference: [22] P. Perkins: Basis questions for general algebras.Algebra Universalis 19 (1984), 16-23. MR 0748904, 10.1007/BF01191487
Reference: [23] R. Pöschel: Graph varieties.preprint.
Reference: [24] R. Pöschel: Graph algebras and graph varieties.preprint. MR 1387902
Reference: [25] R. Pöschel, W. Wessel: Classes of graphs which can be defined by equations in their graph algebras.preprint.
Reference: [26] C. Shallon: Nonfinitely Based Finite Algebras Derived from Lattices.Ph. D. dissertation, UCLA, 1979.
.

Files

Files Size Format View
CzechMathJ_39-1989-1_5.pdf 2.431Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo