Previous |  Up |  Next

Article

Title: Hyperarchimedische Teilbarkeitshalbgruppen (German)
Title: Hyperarchimedian divisibility semigroups (English)
Author: Bosbach, Bruno
Language: German
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 39
Issue: 3
Year: 1989
Pages: 528-543
.
Category: math
.
MSC: 06A12
MSC: 20M10
idZBL: Zbl 0687.06013
idMR: MR1006319
DOI: 10.21136/CMJ.1989.102325
.
Date available: 2008-06-09T15:28:46Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102325
.
Reference: [1] Amemiya I.: A general spectral theory in semi-ordered linear spaces.J. Fac. Sci. Hokka. Uni. 12 (1953), 111-156. Zbl 0053.25802, MR 0056853
Reference: [2] Baker K. A.: Topological methods in the algebraic theory of vector lattices.Thesis, Harvard University 1966.
Reference: [3] Bigard A.: Groupes archimédiens aet hyper-archimédiens.Séminaire Dubreil-Pisot (1967 - 1968), No. 2.
Reference: [4] Bigard A.: Contribution à la théorie des groupes réticulés.These sc. math., Paris 1969. MR 0250950
Reference: [5] Bigard A., Conrad P. F., Wolfenstein S.: Compactly generated lattice-ordered groups.Math. Z. (1968), 201-211. MR 0236083, 10.1007/BF01110258
Reference: [6] Bigard A., Keimel K., Wolfenstein S.: Groupes et Anneaux Réticulés.Springer. Berlin-Heidelberg-New York 1977. Zbl 0384.06022, MR 0552653
Reference: [7] Bosbach B.: Komplementäre Halbgruppen, Axiomatik und Arithmetik.Fund. Math. LXIV (1969), 257-287. Zbl 0183.30603, MR 0260902, 10.4064/fm-64-3-257-287
Reference: [8] Bosbach B.: Schwache Teilbarkeitshalbgruppen.Semig. For. 12 (1976), 119-135. Zbl 0366.06025, MR 0401946
Reference: [9] Bosbach B.: Zur Theorie der stetigen Teilbarkeitshalbgruppen.Semig. For. 20 (1980), 299-317. Zbl 0468.06006, MR 0583113
Reference: [10] Bosbach B.: Archimedische Teilbarkeitshalbgruppen und Quaderalgebren.Semig. For. 20 (1980), 319-334. Zbl 0468.06007, MR 0583114
Reference: [11] Bosbach B.: Zur Theorie der vollständigen Teilbarkeitshalbgruppen.Semig. For. 25 (1982), 111-124. Zbl 0495.06008, MR 0663172
Reference: [12] Bosbach B.: Lattice ordered binary systems.Act. Sc. Math. (to appear). Zbl 0667.06008, MR 0980278
Reference: [13] Clifford A. H.: Naturally totally ordered commutative semigroups.Amer. J. Math. 76 (1954), 631-646. MR 0062118, 10.2307/2372706
Reference: [14] Conrad P. F.: Epi-archimedean groups.Czech. Math. J. 24 (1974), 1-27. Zbl 0319.06009, MR 0347701
Reference: [15] Hölder O.: Die Axiome der Quantität und die Lehre vom Maß.Ber. Verh. Sächs. Ges. Wiss. Leipzig, Math.-Phys. Cl. 53 (1901), 1-64.
Reference: [16] Luxemburg W., Moore L.: Archimedean quotient Riesz spaces.Duke Math. J. 34 (1967), 725-739. Zbl 0171.10501, MR 0217562, 10.1215/S0012-7094-67-03475-8
Reference: [17] Pedersen F.: Contribution to the theory of regular subgroups and prime subgroups of lattice-ordered groups.Dissertation, Tulane University 1967.
Reference: [18] Wolfenstein S.: Representations d'une classe de groupes archimédiens.J. Alg. 42 (1976), 199-207. MR 0417016, 10.1016/0021-8693(76)90037-5
Reference: [19] Zannen A.: MR 651.Math. Reviews 36 (1968), 142-143.
.

Files

Files Size Format View
CzechMathJ_39-1989-3_14.pdf 2.333Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo