Previous |  Up |  Next

Article

Title: Landesman-Lazer type condition and nonlinearities with linear growth (English)
Author: Drábek, Pavel
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 40
Issue: 1
Year: 1990
Pages: 70-86
.
Category: math
.
MSC: 34B15
MSC: 47H15
MSC: 58E99
idZBL: Zbl 0705.34009
idMR: MR1037351
DOI: 10.21136/CMJ.1990.102360
.
Date available: 2008-06-09T15:31:20Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102360
.
Reference: [1] S. Ahmad: A resonance problem in which the nonlinearity may grow linearly.Proc. Amer. Math. Soc. 93 (1984), 381-384. MR 0759657, 10.1090/S0002-9939-1984-0759657-9
Reference: [2] S. Ahmad: Nonselfadjoint resonance problems with unbounded perturbations.Nonlinear Analysis 10 (1986), 147-156. Zbl 0599.35069, MR 0825213, 10.1016/0362-546X(86)90042-8
Reference: [3] S. Ahmad A. C. Lazer: Critical point theory and a theorem of Amaral and Pera.Boll. Un. Mat. Ital. 3-B (1984), 583-598. MR 0774464
Reference: [4] M. Arias: Existence results on the one-dimensional Dirichlet problem suggested by the piecewise linear case.Proc. Amer. Math. Soc. 97 (1986), 121-127. Zbl 0595.34017, MR 0831399, 10.1090/S0002-9939-1986-0831399-2
Reference: [5] M. d'Aujourd'hui: Nonautonomous boundary value problems with jumping nonlinearities.Nonlinear Analysis 11 (1987), 969-977. Zbl 0641.34020, MR 0903788, 10.1016/0362-546X(87)90062-9
Reference: [6] M. d'Aujourd'hui: Problèmes aux limites elliptiques demilinéaires.Thése No 692 (1987), Ecole Polytechnique Federale de Lausanne, pp. 127.
Reference: [7] M. d'Aujourd'hui: The stability of the resonance set for a problem with jumping nonlinearity.to appear in Proc. Roy. Soc. Edinb. 1987. Zbl 0704.34010, MR 0924517
Reference: [8] M. d'Aujourd'hui: On the number of solutions of some semilinear boundary value problems.Equadiff Conference 87. Zbl 0704.35049
Reference: [9] A.Bahri H. Berestycki: Points critiques de perturbations de functionelles paires et applications.C. R. Acad. Sci. Paris Sér. A-B 291 (1980), A 189-A 192. MR 0594288
Reference: [10] A. Bahri H. Berestycki: A perturbation method in critical point theory and applications.Trans. Amer. Math. Society 267 (1981), 1 - 32. MR 0621969, 10.1090/S0002-9947-1981-0621969-9
Reference: [11] H. Berestycki D. G. deFigueiredo: Double resonance in semilinear elliptic problems.Comm. Partial Differential Equations 6 (1981), 91-120. MR 0597753, 10.1080/03605308108820172
Reference: [12] H. Brézis: Semilinear equations in $R^n$ without condition at infinity.Appl. Math. Optim. (to appear). MR 0768633
Reference: [13] A. Canada: K-set contractions and nonlinear vector boundary value problems.J. Math. Anal. Applications 117 (1986), 1 - 22. Zbl 0604.34012, MR 0843001, 10.1016/0022-247X(86)90244-1
Reference: [14] A. Canada P. Martines-Amores: Solvability of some operator equations and periodic solutions of nonlinear functional differential equations.J. Differential Equations 48 (1983), 415-429. MR 0715694, 10.1016/0022-0396(83)90004-9
Reference: [15] A. Canada P. Martines-Amores: Periodic solutions of nonlinear vector ordinary differential equations of higher order at resonance.Nonlinear Analysis 7 (1983), 747-761. MR 0707083, 10.1016/0362-546X(83)90031-7
Reference: [16] A. Canada R. Ortega: Existence theorems for equations in normed spaces and nonlinear boundary-value problems for nonlinear vector ordinary differential equations.Proc. Roy. Soc. Edinburgh 98A (1984), 1-11. MR 0765484
Reference: [17] A. Castro: A two point boundary value problem with jumping nonlinearities.Proc. Amer. Math. Soc. 79 (1980), 207-211. Zbl 0439.34021, MR 0565340, 10.1090/S0002-9939-1980-0565340-1
Reference: [18] G. Caristi: Monotone perturbations of linear operators having nullspace made of oscillatory functions.Nonlinear Analysis 11 (1987), 851 - 860. MR 0898579, 10.1016/0362-546X(87)90112-X
Reference: [19] G. Caristi: On periodic solutions of systems of coupled pendulum-like equations.preprint (Trieste).
Reference: [20] G. Caristi: Periodic solutions of bounded perturbations of linear second order ordinary differential systems.preprint (Trieste). Zbl 0664.34048, MR 1068871
Reference: [21] L. Cesari R. Kannan: Qualitative study of a class of nonlinear boundary value problems at resonance.J. Differential Equations 56 (1985), 63-81. MR 0772121, 10.1016/0022-0396(85)90100-7
Reference: [22] K. C. Chang: A variant mountain pass lemma.Sci. Sinica Ser. A (1983), 1241-1255. Zbl 0544.35044, MR 0745796
Reference: [23] K. C. Chang: Variational methods and sub and super-solutions.Sci. Sinica Ser. A 26 (1983), 1256-1265. Zbl 0544.35045, MR 0745797
Reference: [24] R. Chiappinelli J. Mawhin R. Nugari: Generalized Ambrosetti-Prodi conditions for nonlinear two-point boundary value problems.J. Differential Equations 69 (1987), 422-434. MR 0903395, 10.1016/0022-0396(87)90127-6
Reference: [25] R. Conti R. Iannacci M. N. Nkashama: Periodic solutions of Lienard systems at resonance.Ann. Math. Pura Appl. (4) 139 (1985), 313-328. MR 0798178
Reference: [26] D. G. Costa D. G. deFigueiredo J. V. A. Consalves: On the uniqueness of solution for a class ofsemilinear elliptic problems.J. Math. Anal. Appl. 123 (1987), 170-180. MR 0881539, 10.1016/0022-247X(87)90302-7
Reference: [27] E. N. Dancer: On the use of asymptotics in nonlinear boundary value problems.Ann. Math. Pura Appl. 4 (1982), 167-185. Zbl 0519.34011, MR 0681562, 10.1007/BF01765151
Reference: [28] E. N. Dancer: Counterexamples to some conjectures on the number of solutions on nonlinear equations.Math. Ann 272 (1985), 421 - 440. MR 0799671, 10.1007/BF01455568
Reference: [29] T. R. Ding: Some fixed point theorems and periodically perturbed nondissipative systems.Chinese Ann. Math. 2 (3) (1981), 281 - 300. Zbl 0484.34025, MR 0670138
Reference: [30] T. R. Ding: An infinite class of periodic solutions of periodically perturbed Duffing equations at resonance.Proc. Amer. Math. Society 86 (1982), 47-54. Zbl 0511.34031, MR 0663864, 10.1090/S0002-9939-1982-0663864-1
Reference: [31] T. R. Ding: Nonlinear oscillations at a point of resonance.Sci. Sinica Ser A 25 (9) (1982), 918-931. Zbl 0509.34043, MR 0681856
Reference: [32] T. R. Ding: Unbounded perturbations of forced harmonic oscillations at resonance.Proc. Amer. Math. Society (1) 88 (1983), 59-66. Zbl 0538.34028, MR 0691279, 10.1090/S0002-9939-1983-0691279-X
Reference: [33] P. Drábek: Solvability of the superlinear elliptic boundary value problem.Comment. Math. Univ. Carolinae 22 (1981), 27-35. MR 0609934
Reference: [34] P. Drábek: Bounded nonlinear perturbations of second order linear elliptic problems.Comment. Math. Univ. Carolinae 22 (1981), 215-221. MR 0620358
Reference: [35] P. Drábek: Solvability of nonlinear problems at resonance.Comment. Math. Univ. Carolinae 23 (1982), 359-367. MR 0664981
Reference: [36] P. Drábek: Existence and multiplicity results for some weakly nonlinear elliptic problems at resonance.Čas. pěst. mat. 108 (1983), 272-284. MR 0716412
Reference: [37] P. Drábek: On the resonance problem with nonlinearity which has arbitrary linear growth.J. Math. Anal. Applications 127 (1987), 435-442. MR 0915069, 10.1016/0022-247X(87)90121-1
Reference: [38] P. Drábek: A resonance problem for nonlinear Duffing equation.Comment. Math. Univ. Carolinae 29 (1988), 205-215. MR 0957386
Reference: [39] P. Drábek: Landesman-Lazer condition for nonlinear problems with jumping nonlinearities.to appear. MR 1052334
Reference: [40] P. Drábek S. Invernizzi: Periodic solutions for systems of forced coupled pendulum-like equations.J. Differential Equations 76 (1987), 390-402. MR 0915495
Reference: [41] P. Drábek S. A. Tersian: Characterizations of the range of Neumann problem for semilinear elliptic equations.Nonlinear Analysis 11 (1987), 733 - 739. MR 0893777, 10.1016/0362-546X(87)90039-3
Reference: [42] N. Dunford J. T. Schwartz: Linear Operators. Part I.Interscience Publ., New York, 1958. MR 0117523
Reference: [43] C. Fabry J. Mawhin M. N. Nkashama: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations.Bull. London Math. Soc. 18 (1986), 173-180. MR 0818822, 10.1112/blms/18.2.173
Reference: [44] M. C. L. Fernandes P. Omari F. Zanolin: On the solvability of a semilinear two-point BVP around the first eigenvalue.Preprint 77/87/M, SISSA, Trieste 1987.
Reference: [45] M. C. L. Fernandes F. Zanolin: Periodic solutions of a second order differential equation with one-sided growth restrictions on the restoring term.Preprint 43/87/M, SISSA, Trieste 1987. MR 0959391
Reference: [46] D. G. deFigueiredo: Semilinear elliptic equations at resonance: Higher eigenvalues and unbounded nonlinearities.in: Recent Advance in Differential Equations (R. Conti Ed.) pp. 89 - 99, Academic Press, London 1981. MR 0643128
Reference: [47] D. G. deFigueiredo: On the superlinear Ambrosetti-Prodi problem.Nonlinear Analysis 5 (1984), 655-666. MR 0746723
Reference: [48] D. G. deFigueiredo: On the existence of multiple ordered solutions of nonlinear eigenvalue problems.Nonlinear Analysis 11 (1987), 481-492. MR 0887657, 10.1016/0362-546X(87)90066-6
Reference: [49] D. G. deFigueiredo S. Solimini: A variational approach to superlinear elliptic problems.Comm. Partial Differential Equations 9 (1984), 699-717. MR 0745022, 10.1080/03605308408820345
Reference: [50] D. G. deFigueiredo W. M. Ni: Perturbations of second order linear elliptic problems by nonlinearities without Landesman-Lazer condition.Nonlinear Analysis 5 (1981), 57-60.
Reference: [51] D. Fortunato E. Jannelli: Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains.Proc. Royal Soc. Edinburgh 105A (1987), 205-213. MR 0890056
Reference: [52] G. Fournier J. Mawhin: On periodic solutions of forced pendulum-like equations.Sémin. de Math. No 48, UCL, Louvain-la-Neuve, 1984. MR 0811773
Reference: [53] S. Fučík: Solvability of Nonlinear Equations and Boundary Value Problems.D. Reidel Publ. Company, Holland 1980. MR 0620638
Reference: [54] T. Gallouët 0. Kavian: Résultats d'Existence et de Non-Existence pour certains Problèmes Demilineaires a l'infini.Ann. Fac. Sc. de Toulouse 1981.
Reference: [55] T. Gallouët O. Kavian: Resonance forjumping nonlinearities.Comm. Part. Diff. Equations 7 (3) (1982), 325-342. MR 0646710, 10.1080/03605308208820225
Reference: [56] T. Gallouët J. M. Morel: The equation $-\Delta u+\vert u\vert \sp {\alpha-1}u=f$, for $0\leq \alpha\leq 1$.Nonlinear Analysis 11 (1987), 893-912. MR 0903785
Reference: [57] C. P. Gupta: Perturbations of second order linear elliptic problems by unbounded nonlinearities.Nonlinear Analysis 6 (1982), 919-933. Zbl 0509.35035, MR 0677617, 10.1016/0362-546X(82)90011-6
Reference: [58] P. Habets M. N. Nkashama: On periodic solutions of nonlinear second order vector differential equations.Proc. Roy. Soc. Edinburgh 104A (1986), 107-125. MR 0877895
Reference: [59] D. C. Hart A. C. Lazer P. J. McKenna: Multiple solutions of two-point boundary value problems withjumping nonlinearities.J. Differential Equations 59 (1985), 266-281. MR 0804892, 10.1016/0022-0396(85)90158-5
Reference: [60] H. Hofer: Variational and topological methods in partially ordered Hilbert spaces.Math. Ann. 267 (1982), 493-514. Zbl 0488.47034, MR 0682663, 10.1007/BF01457453
Reference: [61] R. Iannacci M. N. Nkashama: Nonlinear boundary value problems at resonance.Nonlinear Analysis 11 (1987), 455-474. MR 0887655, 10.1016/0362-546X(87)90064-2
Reference: [62] R. Iannacci M. N. Nkashama: Unbounded perturbations of forced second order ordinary differential equations at resonance.J. Differential Equations 69 (1987), 289-309. MR 0903389, 10.1016/0022-0396(87)90121-5
Reference: [63] R. Iannacci M. N. Nkashama P. Omari F. Zanolin: Periodic solutions with jumping nonlinearities under nonuniform conditions.to appear.
Reference: [64] R. Iannacci M. N. Nkashama J. R. Ward: Nonlinear second order elliptic partial differential equations at resonance.preprint Memphis State University, Dept. of Mathematics 1987.
Reference: [65] S. Invernizzi: A note on nonuniform nonresonance for jumping nonlinearities.Comment. Math. Univ. Carolinae 27 (1986), 285-291. Zbl 0603.34016, MR 0857548
Reference: [66] R. Kannan V. Lakshmikantham J. J. Nieto: Sufficient conditions for existence of solutions of nonlinear boundary value problems at resonance.Nonlinear Analysis 7 (1983), 1013-1020. MR 0713210, 10.1016/0362-546X(83)90116-5
Reference: [67] R. Kannan R. Ortega: Periodic solutions of pendulum-type equations.J. Differential Equations 59 (1985), 123-144. MR 0803090, 10.1016/0022-0396(85)90141-X
Reference: [68] R. Kannan R. Ortega: An asymptotic result in forced oscillations of pendulum-type equations.Applicable Analysis 22 (1986), 45-53. MR 0854539, 10.1080/00036818608839604
Reference: [69] R. Kannan R. Ortega: Superlinear elliptic boundary value problems.Czech. Math. J. 37 (1987), 386-399. MR 0904766
Reference: [70] R. Kent Nagle K. Singhofer: Nonlinear ordinary differential equations at resonance with slowly varying nonlinearities.Applicable Analysis 11 (1980), 137-149. MR 0599262, 10.1080/00036818008839327
Reference: [71] R. Kent Nagle K. Singhofer: Existence and multiplicity of solutions to nonlinear differential equations at resonance.J. Math. Analysis Appl. 94 (1983), 222-236. MR 0701459, 10.1016/0022-247X(83)90015-X
Reference: [72] E. M. Landesman A. C. Lazer: Nonlinear perturbations of linear elliptic boundary value problems at resonance.J. Math. Mech. 19 (1970), 609 - 623. MR 0267269
Reference: [73] A. C. Lazer D. E. Leach: Bounded perturbations of forced harmonic oscillators at resonance.Ann. Math. Pura Appl. (4) 82 (1969), 49-68. MR 0249731
Reference: [74] A. C. Lazer P. J. McKenna: On the number of solutions of a nonlinear Dirichlet problem.J. Math. Anal. Appl. 84 (1981), 282-294. MR 0639539, 10.1016/0022-247X(81)90166-9
Reference: [75] A. C. Lazer P. J. McKenna: On limitations to the solution set of some nonlinear problems.in: Dynamical systems II pp. 247-253, Academic Press, New York-London, 1982. MR 0703698
Reference: [76] A. C. Lazer P. J. McKenna: On a conjecture on the number of solutions of a nonlinear Dirichlet problem with jumping nonlinearity.in: Trends in theory and practice of nonlinear differential equations (Arlington, Texas 1982) pp. 301 - 313, Lecture Notes in Pure and Appl Math. 90, Dekker New York, 1984. MR 0741517
Reference: [77] A. C. Lazer P. J. McKenna: On a conjecture related to the number of solutions of a nonlinear Dirichlet problem.Proc. Royal Soc. Edinburgh Sect. 1 95 (1983), 275-283. MR 0726879
Reference: [78] A. C. Lazer P. J. McKenna: Recent multiplicity results for nonlinear boundary value problems.in: Differential equations (Birmingham, Ala., 1983), pp. 391 - 396, NorthHolland, Amsterdam-New York, 1984. MR 0799375
Reference: [79] A. C. Lazer P. J. McKenna: Multiplicity results for a class of semilinear elliptic and parabolic boundary value problems.J. Math. Anal. Appl. 107 (1985), 371 - 395. MR 0787722, 10.1016/0022-247X(85)90320-8
Reference: [80] A. C. Lazer P. J. McKenna: Multiplicity results for a semilinear boundary value problem with the nonlinearity crossing higher eigenvalues.Nonlinear Analysis 9 (1985), 335-350. MR 0783582, 10.1016/0362-546X(85)90058-6
Reference: [81] A. C. Lazer P. J. McKenna: Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues.Comm. Partial Differential Equations 10 (1985), 107-150. MR 0777047, 10.1080/03605308508820374
Reference: [82] D. Lupo S. Solimini: A note on a resonance problem.preprint. MR 0837156
Reference: [83] J. Mawhin: Compacité, monotonie et convexité dans Pétude des problèmes aux limites semi-linéaires.Sémin. d'Analyse Moderne No. 19, Université de Sherbrooke, 1981.
Reference: [84] J. Mawhin: Periodic oscillations of forced pendulum-like equations.in: Ordinary and Partial Differential Equations, Lecture Notes in Mathematics no. 964, pp. 458-476, Springer-Verlag, Berlin-New York, 1982. Zbl 0517.34029, MR 0693131, 10.1007/BFb0065017
Reference: [85] J. Mawhin: Boundary value problems with nonlinearities having infinite jumps.Comment. Math. Univ. Carolinae 25 (1984), 401-414. Zbl 0562.34010, MR 0775560
Reference: [86] J. Mawhin J. R. Ward: Periodic solutions of some forced Liénard differential equations at resonance.Arch. Math. 41 (1983), 337-351. MR 0731606, 10.1007/BF01371406
Reference: [87] J. Mawhin W. Willem: Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations.J. Differential Equations 52 (1984), 264-287. MR 0741271, 10.1016/0022-0396(84)90180-3
Reference: [88] P. J. McKenna R. Redlinger W. Walter: Multiplicity results for asymptotically homogeneous semilinear boundary value problems.Ann. Math. Pura Appl. 143 (1986), 247-258. MR 0859606, 10.1007/BF01769219
Reference: [89] P. S. Milojevic: Solvability of some semilinear equations with strong nonlinearities and applications to elliptic problems.Applicable Analysis 25 (1987), 181-196. MR 0912180, 10.1080/00036818708839684
Reference: [90] M. N. Nkashama: Solutions périodiques des systèmes non conservatifs périodiquement perturbés.Bull. Soc. Math. France 113 (1985), 387-402. Zbl 0607.34041, MR 0850775
Reference: [91] M. N. Nkashama: Periodically perturbed nonconservative systems of Liénard type.preprint Memphis State University, Department of Mathematics 1987. MR 1057959
Reference: [92] P. Omari G. Villari F. Zanolin: Periodic solutions of the Liénard equation with one-sided growth restriction.J. Differential Equations 67 (1987), 278 - 293. MR 0879698, 10.1016/0022-0396(87)90151-3
Reference: [93] P. Omari F. Zanolin: Existence results for forced nonlinear periodic BVPs at resonance.Ann. Math. Pura Appl. 141 (1985), 127-157. MR 0816782, 10.1007/BF01763171
Reference: [94] P. Omari F. Zanolin: Some remarks about the paper "Periodic solutions of the Liénard equation with one sided growth restrictions".(unpublished internal report), Trieste 1986.
Reference: [95] P. Omari F. Zanolin: On the existence of periodic solutions of forced Liénard differential equations.Nonlinear Analysis 11 (1987), 275-284. MR 0877887, 10.1016/0362-546X(87)90104-0
Reference: [96] R. Ortega: A counterexample for the damped pendulum equation.preprint. Zbl 0679.70022, MR 1026970
Reference: [97] W. V. Petryshyn Z. S. Yu: Boundary value problems at resonance for certain semilinear ordinary differential equations.J. Math. Anal. Appl. 98 (1984), 72 - 91. Zbl 0529.34023, MR 0728517, 10.1016/0022-247X(84)90278-6
Reference: [98] W. V. Petryshyn Z. S. Yu: On the solvability or an equation describing the periodic motions of a satellite in its elliptic orbit.Nonlinear Analysis 9 (1985), 969 - 975. MR 0804562, 10.1016/0362-546X(85)90079-3
Reference: [99] M. Ramaswamy: On the global set of solutions of a nonlinear ODE: Theoretical and numerical description.J. Differential Equations 65 (1987), 1 - 48. MR 0859471, 10.1016/0022-0396(86)90040-9
Reference: [100] B. Ruf: Multiplicity results for superlinear elliptic equations.Nonlinear Funct. Anal. and Appl. (Maratea, 1985), pp. 353-367, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 173, Reidel, Dordrecht-Boston, Mass., 1986. MR 0852595
Reference: [101] B. Ruf: Remarks and generalizations related to a recent multiplicity result of A. Lazer and P. McKenna.Nonlinear Analysis 9 (1985), 1325-1330. Zbl 0626.34017, MR 0820643, 10.1016/0362-546X(85)90092-6
Reference: [102] B. Ruf: A nonlinear Fredholm alternative for second order ordinary differential equations.Math. Nachr. 127 (1986), 299-308. Zbl 0605.34020, MR 0861733, 10.1002/mana.19861270121
Reference: [103] B. Ruf S. Solimini: On a class of superlinear Sturm-Liouville problems with arbitrarily many solutions.SIAM J. Math. Anal. 17 (1986), 761 - 771. MR 0846387, 10.1137/0517055
Reference: [104] B. Ruf P. N. Srikanth: Multiplicity results for superlinear elliptic problems with partial interference with the spectrum.J. Math. Anal. Appl. 118 (1986), 15-23. MR 0849438, 10.1016/0022-247X(86)90286-6
Reference: [105] B. Ruf P. N. Srikanth: Multiplicity results for ODEs with nonlinearities crossing all but finite number of eigenvalues.Nonlinear Analysis 10 (1986), 157-163. MR 0825214, 10.1016/0362-546X(86)90043-X
Reference: [106] L. Sanches: Resonance problems with nonlinearity interfering with eigenvalues of higher order.Applicable Analysis 25 (1987), 275-286. MR 0912186, 10.1080/00036818708839691
Reference: [107] K. Schmidt: Boundary value problems with jumping nonlinearities.Rocky Mountain J. Math. 16 (1986),481-496. MR 0862276
Reference: [108] S. Solimini: Some remarks on the number of solutions of some nonlinear elliptic problems.Ann. Inst. H. Poincaré Anal. Non Lineaire 2 (1985), 143-156. Zbl 0583.35044, MR 0794004, 10.1016/S0294-1449(16)30407-3
Reference: [109] S. Solimini: On the solvability of some elliptic partial differential equations with the linear part at resonance.J. Math. Anal. Appl. 117 (1986), 138-152. Zbl 0634.35030, MR 0843010, 10.1016/0022-247X(86)90253-2
Reference: [110] Song-Sun Lin: Some results for semilinear differential equations at resonance.J. Math. Analysis Appl. 93 (1983), 574-592. MR 0700164, 10.1016/0022-247X(83)90193-2
Reference: [111] H. Triebel: Mapping properties of nonlinear operators generated by $\Phi (u)=\vert u\vert \sp{\rho }$ and by holomorphic $\Phi (u)$ in function spaces of Besov-Hardy-Sobolev type. Boundary value problems for elliptic differential equations of type $\Delta u=f(x)+\Phi (u)$..Math. Nachr. 117 (1984), 193-213. Zbl 0573.35032, MR 0755303
Reference: [112] J. R. Ward: Periodic solutions for systems of second order differential equations.J. Math. Anal. Appl. 81 (1981), 92-98. Zbl 0462.34023, MR 0618763, 10.1016/0022-247X(81)90052-4
Reference: [113] J. R. Ward: Asymptotic conditions for periodic solutions of ordinary differential equations.Proc. Amer. Math. Soc. 81 (1981), 415-420. Zbl 0461.34029, MR 0597653, 10.1090/S0002-9939-1981-0597653-2
Reference: [114] J. R. Ward: Existence for a class of semilinear problems at resonance.J. Differential Equations 45 (1982), 156-167. Zbl 0515.34003, MR 0665993, 10.1016/0022-0396(82)90062-6
Reference: [115] J. R. Ward: Perturbations with some superlinear growth for a class of second order elliptic boundary value problems.Nonlinear Analysis 6 (1982), 367-374. Zbl 0533.35033, MR 0654812, 10.1016/0362-546X(82)90022-0
Reference: [116] J. R. Ward: A boundary value problem with a periodic nonlinearity.Nonlinear Analysis 10 (1986), 207-213. Zbl 0609.34021, MR 0825218, 10.1016/0362-546X(86)90047-7
Reference: [117] J. R. Ward: A note on the Dirichlet problem for some semilinear elliptic equations.preprint.
Reference: [118] M. Willem: Topology and semilinear equations at resonance in Hilbert space.Nonlinear Analysis 5 (1981), 517-524. Zbl 0472.47036, MR 0613060, 10.1016/0362-546X(81)90100-0
Reference: [119] S. A. Williams: A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem.J. Differential Equations 8 (1970), 580-586. Zbl 0209.13003, MR 0267267, 10.1016/0022-0396(70)90031-8
Reference: [120] F. Zanolin: Remarks on multiple periodic solutions for nonlinear ordinary differential system of Liénard type.Boll. Un. Mat. Ital. (6) 1-B (1982), 683-698. MR 0666597
.

Files

Files Size Format View
CzechMathJ_40-1990-1_7.pdf 2.063Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo