Previous |  Up |  Next

Article

Title: On integration in Banach spaces, XIII. Integration with respect to polymeasures (English)
Author: Dobrakov, Ivan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 40
Issue: 4
Year: 1990
Pages: 566-582
.
Category: math
.
MSC: 28B05
MSC: 46G10
idZBL: Zbl 0793.28008
idMR: MR1084893
DOI: 10.21136/CMJ.1990.102411
.
Date available: 2008-06-09T15:35:09Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102411
.
Reference: [1] Blei R. C.: Fractional dimensions and bounded fractional forms.Mem. Amer. Math. Soc. 57, (1985), No. 331. Zbl 0623.26015, MR 0804208
Reference: [2] Blei R. C.: Multi-linear measure theory and the Grothendieck factorization theorem.Proc. London Math. Soc. (3) 56 (1988), 529-546. Zbl 0661.46057, MR 0931513
Reference: [3] Chang D. K., Rao M. M.: Special representation of weakly harmonizable processes.Stochastic Anal. Appl. 6 (1988), 169-189. MR 0940899, 10.1080/07362998808809141
Reference: [4] Dobrakov I.: On integration in Banach spaces, I.Czech. Math. J. 20 (95) (1970), 511-536. Zbl 0215.20103, MR 0365138
Reference: [4b] Dobrakov I.: On integration in Banach spaces, II.Czech. Math. J. 20 (95) (1970), 680-695. Zbl 0224.46050, MR 0365139
Reference: [5] Dobrakov I.: On integration in Banach spaces, III.Czech. Math. J. 29 (104) (1979), 478-499. Zbl 0429.28011, MR 0536071
Reference: [6] Dobrakov. I.: On integration in Banach spaces, IV, and V.Czech. Math. J. 30 (105) (1980), 259-279, and 610-628. MR 0566051
Reference: [7] Dobrakov I., Morales P.: On integration in Banach spaces, VI.Czech. Math. J. 35 (110) (1985), 173-187. Zbl 0628.28007, MR 0787123
Reference: [8] Dobrakov I.: On integration in Banach spaces, VII.Czech. Math. J. 38 (113) (1988), 434-449. Zbl 0674.28003, MR 0950297
Reference: [9] Dobrakov I.: On integration in Banach spaces, VIII (Polymeasures).Czech. Math. J. 37 (112) (1987), 487-506. Zbl 0688.28002, MR 0904773
Reference: [10] Dobrakov I.: On integration in Banach spaces, IX, and X (Integration with respect to polymeasures).Czech. Math. J. 38 (113) (1988), 589-601, and 713-725. MR 0962903
Reference: [11] Dobrakov I.: On integration in Banach spaces, XI (Integration with respect to polymeasures).Czech. Math. J. 39 (114) 1989, MR 1032359
Reference: [12] Dobrakov I.: On integration in Banach spaces, XII (Integration with respect to polymeasures).Czech. Math. J. Zbl 0793.28007
Reference: [13] Dobrakov I.: On extension of vector polymeasures.Czech. Math. J. 38 (113), (1988), 88-94. Zbl 0688.28005, MR 0925943
Reference: [14] Dobrakov I.: On representation of linear operators on $C\sb{0}\,(T,X})$.Czech. Math. J. 21 (96), (1971), 13-30. Zbl 0225.47018, MR 0276804
Reference: [15] Dobrakov I.: On Lebesgue pseudonorms on $C\sb{0}\,(T})$.Math. Slovaca 32, (1982), 327-335. Zbl 0525.28009, MR 0676567
Reference: [16] Dobrakov I.: Representation of multilinear operators on ${\ssf X}\sb 0(T\sb i)$.Czech. Math. J. 39 (114), (1989). MR 0992135
Reference: [17] Dobrakov I.: Representation of multilinear operators on ${\ssf X}\sb 0(T\sb i, X\sb i)$, I.Atti del Semin. di Mat. Fis. Universita di Modena.
Reference: [18] Dobrakov I.: Representation of multilinear operators on ${\ssf X} C\sb 0(T\sb i, X\sb i)$. II.Czech. Math. J.
Reference: [19] Fréchet M.: Sur les fonctionnelles bilineares.Trans. Amer. Math. Soc. 16 (1915), 215-224. MR 1501010, 10.2307/1988990
Reference: [20] Gilbert J. E., Leih T. J.: Factorization, tensor products, and bilinear forms in Banach space theory.Notes in Banach spaces, Univ, of Texas Press, Austin, 1980, 182-305. Zbl 0471.46053, MR 0606223
Reference: [21] Gilbert J. E., Ito T., Schreiber B. M.: Bimeasure algebras on locally compact groups.J. Functional Anal. 64 (1985), 134-162. Zbl 0601.43001, MR 0812388, 10.1016/0022-1236(85)90071-0
Reference: [22] Graham C. C., Schreiber B. M.: Bimeasure algebras on LCA groups.Pacific J. Math. 115 (1984), 91-127. Zbl 0502.43005, MR 0762204, 10.2140/pjm.1984.115.91
Reference: [23] Graham C. C., Schreiber B. M.: Sets of interpolation for Fourier transforms of bimeasures.Colloq. Math. 51 (1987), 149-154. Zbl 0629.43006, MR 0891282, 10.4064/cm-51-1-149-154
Reference: [24] Graham C. C., Schreiber B. M.: Projections in spces of bimeasures.Canad. Math. Bull. 31 (1988), 19-25. MR 0932608, 10.4153/CMB-1988-003-9
Reference: [25] Hille E., Phillips R.: Functional Analysis and Semigroups.Amer. Math. Soc. Coll. Publ., Providence, 1957. Zbl 0078.10004, MR 0089373
Reference: [26] Johnson B. E., Kadison R. V., Ringrose J. R.: Cohomology of operator algebras, III. Reduction to normal cohomology.Bull. Soc. math. France 100 (1972), 73-96. Zbl 0234.46066, MR 0318908, 10.24033/bsmf.1731
Reference: [27] Kolmogoroff A.: Untersuchungen über den Integralbegriff.Math. Ann. 103 (1930), 654-696. MR 1512641, 10.1007/BF01455714
Reference: [28] Rao M. M.: Bimeasures and harmonizable processes (Analysis, Classification, and Representation).UCR Tech. Report No. 14, 1988. MR 1020535
Reference: [29] Saeki S.: The ranges of certain isometries of tensor products of Banach spaces.J. Math. Soc. Japan 23 (1971), 27-39. Zbl 0203.13303, MR 0308810, 10.2969/jmsj/02310027
Reference: [30] Saeki S.: Tensor products of C(X)-spaces and their conjugate spaces.J. Math. Soc. Japan 28 (1976), 33-47. Zbl 0313.46022, MR 0394237, 10.2969/jmsj/02810033
Reference: [31] Varopoulos N. Th.: Tensor algebras and harmonic analysis.Acta Math. 119 (1967), 51- 112. Zbl 0163.37002, MR 0240564, 10.1007/BF02392079
Reference: [32] Ylinen K.: Noncommutative Fourier transformations of bounded bilinear forms and completely bounded multilinear operators.(UCR Tech. Report No. 12 1987), J. Functional Anal. (to appear) MR 0950088
.

Files

Files Size Format View
CzechMathJ_40-1990-4_3.pdf 2.186Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo