Previous |  Up |  Next

Article

Title: On directed interpolation groups (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 40
Issue: 4
Year: 1990
Pages: 648-658
.
Category: math
.
MSC: 06F15
idZBL: Zbl 0757.06007
idMR: MR1084900
DOI: 10.21136/CMJ.1990.102418
.
Date available: 2008-06-09T15:35:42Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102418
.
Reference: [1] N. L. Alling: A characterization of abelian $\eta \sb{\alpha }$-groups in terms of their natural valuations.Proc. Nat. Acad. Sci. U.S.A. 47, 1961, 711-713. MR 0175983, 10.1073/pnas.47.5.711
Reference: [2] N. L. Alling: On the existence of real-closed fields that are $\eta \sb{\alpha }$-sets of power $\aleph \sb{\alpha }$.Trans. Amer. Math. Soc. 103, 1962, 341-352. MR 0146089
Reference: [3] P. Conrad: K-radical classes of lattice ordered groups.Algebra Carbondale 1980, Lecture Notes in Mathematics 848, Springer-Verlag 1981, 196-207. MR 0613186
Reference: [4] M. Darnel: Closure operators on radicals of lattice ordered groups.Czechoslov. Math. J. 37, 1987, 51-64. MR 0875127
Reference: [5] I. Fleischer: A characterization of lexicographically ordered $\eta \sb{\alpha }$-sets.Proc. Nat. Acad. Sci. U.S.A. 50, 1963, 1107-1108. Zbl 0137.02101, 10.1073/pnas.50.6.1107
Reference: [6] L. Fuchs: Partially ordered algebraic systems.Pergamon Press, Oxford, 1963. Zbl 0137.02001, MR 0171864
Reference: [7] L. Fuchs: Riesz groups.Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 79, 1965, 1-34. Zbl 0125.28703, MR 0180609
Reference: [8] K. R. Goodearl: Partially ordered abelian groups with interpolation.American Math. Society, Mathematical Surveys and Monographs, Vol. 20, Providence, 1986. Zbl 0589.06008, MR 0845783
Reference: [9] K. R. Goodearl D. E. Handelman J. W. Laurence: Affine representations of Grothendieck groups and applications to Rickat C*-algebras and $\aleph \sb{0}$-continuous regular rings.Mem. Amer. Math. Soc. No 234, 1980. MR 0571998
Reference: [10] F. Hausdorff: Grundzüge der Mengenlehre.Leipzig 1914.
Reference: [11] W. C. Holland: Varieties of l-groups are torsion classes.Czechoslov. Math. J. 29, 1979, 11-12. Zbl 0432.06011, MR 0518135
Reference: [12] J. Jakubík: Radical classes and radical mappings of lattice ordered groups.Symposia mathematica 31, 1977, Academic Press, New York-London, 451-477. MR 0491397
Reference: [13] J. Jakubík: Products of radical classes of lattice ordered groups.Acta Math. Univ. Comenianae 39, 1980, 31-42. MR 0619260
Reference: [14] J. Jakubík: On K-radical classes of lattice ordered groups.Czechoslov. Math. J. 33, 1983, 149-163. MR 0687428
Reference: [15] J. Jakubík: Radical subgroups of lattice ordered groups.Czechoslov. Math. J. 36, 1986, 285-297. MR 0831316
Reference: [16] J. Jakubík: Closure operators on the lattice of radical classes of lattice ordered groups.Czechoslov. Math. J. 38, 1988, 71-77. MR 0925941
Reference: [17] M. Jakubíková: Konvexe gerichtete Untergruppen der Rieszschen Gruppen.. Matem. časopis 21, 1971, 3-8. MR 0302529
Reference: [18] N. Ja. Medvedev: On the lattice of radicals of a finitely generated l-group.(In Russian.) Math. Slovaca 33, 1983, 185-188. MR 0699088
Reference: [19] P. Ribenboim: On the existence of totally ordered Abelian groups which are $\eta \sb{\alpha }$-sets.Bull. Acad. Polon. Sci., sér. math., astr., phys. 13, 1965, 545-548. Zbl 0135.06201, MR 0197591
.

Files

Files Size Format View
CzechMathJ_40-1990-4_10.pdf 1.512Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo