Previous |  Up |  Next

Article

Title: On the Mazur-Orlicz theorem (English)
Author: Neumann, Michael M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 41
Issue: 1
Year: 1991
Pages: 104-109
.
Category: math
.
MSC: 46G99
MSC: 47H99
idZBL: Zbl 0791.46003
idMR: MR1087629
DOI: 10.21136/CMJ.1991.102439
.
Date available: 2008-06-09T15:37:16Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102439
.
Reference: [1] Fuchssteiner B., König H.: New versions of the Hahn-Banach theorem.In: General Inequalities 2, E. F. Beckenbach (ed.). ISNM 47, pp. 255-266. Basel. Birkhäuser Verlag 1980. MR 0608253
Reference: [2] Fuchssteiner B., Lusky W.: Convex Cones.North-Holland Math. Studies Vol. 56. Amsterdam-New York-Oxford. North-Holland Publishing Company 1981. Zbl 0478.46002, MR 0640719
Reference: [3] Jameson G.: Ordered Linear Spaces.Springer Lecture Notes in Math. Vol. 141. Berlin-Heidelberg-New York. Springer 1970. Zbl 0196.13401, MR 0438077
Reference: [4] Kaufman R.: Interpolation of additive functionals.Studia Math. 27, 269-272 (1966). Zbl 0143.36302, MR 0200699, 10.4064/sm-27-3-269-272
Reference: [5] Kindler J.: A Mazur-Orlicz type theorem for submodular set functions.J. Math. Anal. Appl. 120, 533-546(1986). Zbl 0605.28004, MR 0864770, 10.1016/0022-247X(86)90175-7
Reference: [6] König H.: Über das von Neumannsche Minimax-Theorem.Arch. Math. 19, 482-487 (1968). MR 0240600, 10.1007/BF01898769
Reference: [7] König H.: On certain applications of the Hahn-Banach and minimax theorems.Arch. Math. 21, 583-591 (1970). MR 0290125, 10.1007/BF01220969
Reference: [8] König H., Neumann M. M.: Mathematische Wirtschaftstheorie.Math. Systems in Economics Vol. 100. Königstein/Taunus. Hain Verlag bei Athenäum 1986. MR 0842432
Reference: [9] Kranz P.: Additive functionals on abelian semigroups.Ann. Soc. Math. Pol. 16, 239-246 (1972). Zbl 0262.20087, MR 0338250
Reference: [10] Martellotti A., Salvadori A.: A minimax theorem for functions taking values in a Riesz space.J. Math. Anal. Appl. 133, 1-13 (1988). Zbl 0651.49005, MR 0949313, 10.1016/0022-247X(88)90360-5
Reference: [11] Mazur S., Orlicz W.: Sur les espaces métriques linéaires II.Studia Math. 13, 137-179 (1953). Zbl 0052.11103, MR 0068730, 10.4064/sm-13-2-137-179
Reference: [12] Oettli W.: On a general formulation of the Hahn-Banach principle with application to optimization theory.In: Optimization - Theory and Algorithms, J. B. Hiriart-Urruty, W. Oettli, and J. Stoer (eds.), pp. 91-101. New York-Basel. Marcel Dekker 1983. Zbl 0521.49017, MR 0716359
Reference: [13] Peressini A. L.: Ordered Topological Vector Spaces.New York-Evanston-London. Harper, and Row 1967. Zbl 0169.14801, MR 0227731
Reference: [14] Pták V.: On a theorem of Mazur and Orlicz.Studia Math. 15, 365-366 (1956). MR 0080880, 10.4064/sm-15-3-365-366
Reference: [15] Sikorski R.: On a theorem of Mazur and Orlicz.Studia Math. 13, 180-182 (1953). Zbl 0052.11201, MR 0068731, 10.4064/sm-13-2-180-182
Reference: [16] Simons S.: Extended and sandwich versions of the Hahn-Banach theorem.J. Math. Anal. Appl. 21, 112-122 (1968). Zbl 0174.43703, MR 0222601, 10.1016/0022-247X(68)90244-8
.

Files

Files Size Format View
CzechMathJ_41-1991-1_13.pdf 896.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo