Title:
|
The tangent bundle of $p^r$-velocities over a homogeneous space (English) |
Author:
|
Gancarzewicz, Jacek |
Author:
|
Salgado, Modesto |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
41 |
Issue:
|
4 |
Year:
|
1991 |
Pages:
|
570-591 |
. |
Category:
|
math |
. |
MSC:
|
53C30 |
MSC:
|
53C35 |
MSC:
|
58A20 |
idZBL:
|
Zbl 0769.53030 |
idMR:
|
MR1134950 |
DOI:
|
10.21136/CMJ.1991.102492 |
. |
Date available:
|
2008-06-09T15:41:46Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/102492 |
. |
Reference:
|
[1] F. Adams: Lectures on Lie groups.W. A. Benjamin INC, New York-Amsterdam, 1969. Zbl 0206.31604, MR 0252560 |
Reference:
|
[2] S. Helgason: Differential Geometry, Lie Groups, and Symmetric spaces.Academic Press, New York, 1978. Zbl 0451.53038, MR 0514561 |
Reference:
|
[3] J. Gancarzewicz: Liftings of vector fields to natural bundles.Comptes Rendus Acad. Sciences, Paris 296(1982), 59-61. MR 0691028 |
Reference:
|
[4] J. Gancarzewicz: Liftings of functions and vector fields to natural bundles.Dissert. Math. CCXII, Warszawa 1983. MR 0697471 |
Reference:
|
[5] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry.Interscience Publ., New York, vol. I (1963), vol. II (1969). Zbl 0119.37502, MR 0152974 |
Reference:
|
[6] I. Kolář: Functorial prolongations of Lie groups and their actions.Časop. Pěst. Mat. 108 (1983), 289-293. MR 0716414 |
Reference:
|
[7] O. Kowalski: Generalized symmetric spaces.Lect. Notes in Math., 105 Springer, 1980. Zbl 0431.53042, MR 0579184 |
Reference:
|
[8] A. Morimoto: Prolongations of geometric structures.Lect. Notes, Inst. Math. Nagoya University, 1969. Zbl 0223.53027, MR 0276893 |
Reference:
|
[9] A. Morimoto: Liftings of some types of tensor fields and connections to tangent bundle of $p^r$-velocities.Nagoya Math. J. 40 (1970), 13 - 31. MR 0279720, 10.1017/S0027763000013830 |
Reference:
|
[10] A. Morimoto: Liftings of tensor fields and connections to the tangent bundle of higher order.Nagoya Math. J. 40 (1970), 99-120. MR 0279719, 10.1017/S002776300001388X |
Reference:
|
[11] M. Sekizawa: On complete lifts of reductive homogeneous spaces and generalized symmetric spaces.Czechoslovak Math. J. 36 (111) (1986), 516-534. Zbl 0615.53042, MR 0863184 |
Reference:
|
[12] M. Toomannian: Regular $s$-structure on TM.Tensor N. S. 42 (1985), 225 - 228. MR 0847040 |
Reference:
|
[13] K. Yano, S. lshihwa: Tangent and cotangent bundles.Marcel Dekker Inc., New York, 1973. |
. |