Previous |  Up |  Next

Article

Title: An integral defined by approximating $BV$ partitions of unity (English)
Author: Kurzweil, Jaroslav
Author: Mawhin, Jean
Author: Pfeffer, Washek Frank
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 41
Issue: 4
Year: 1991
Pages: 695-712
.
Category: math
.
MSC: 26A45
MSC: 26B30
idZBL: Zbl 0763.26007
idMR: MR1134958
DOI: 10.21136/CMJ.1991.102500
.
Date available: 2008-06-09T15:42:31Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102500
.
Reference: [1] A. S. Besicovitch: On sufficient conditions for a function to be analytic, and behaviour of analytic functions in the neighbourhood of non-isolated singular points.Proc. London Math. Soc., 32: 1-9, 1931. 10.1112/plms/s2-32.1.1
Reference: [2] K. J. Falconer: The Geometry of Fractal Sets.Cambridge Univ. Press, Cambridge, 1985. Zbl 0587.28004, MR 0867284
Reference: [3] H. Federer: Geometric Measure Theory.Springer-Verlag, New York, 1969. Zbl 0176.00801, MR 0257325
Reference: [4] E. Giusti: Minimal Surfaces and Functions of Bounded Variation.Birkhäuser, Basel, 1984. Zbl 0545.49018, MR 0775682
Reference: [5] R. Henstock: Theory of Integration.Butterworth, London, 1963. Zbl 0154.05001, MR 0158047
Reference: [6] E. J. Howard: Analyticity of almost everywhere differentiable functions.Proc. American Math. Soc., to appear. Zbl 0705.30001, MR 1027093
Reference: [7] J. Jarník, J. Kurzweil: A nonabsoluteIy convergent integral which admits transformation and can be used for integration on manifolds.Czechoslovak Math. J., 35: 116-139, 1985. MR 0779340
Reference: [8] J. Jarník, J. Kurzweil: A new and more powerful concept of the $PU$-integral.Czechoslovak Math. J., 38: 8-48, 1988. MR 0925939
Reference: [9] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter.Czechoslovak Math. J., 82: 418-446, 1957. Zbl 0090.30002, MR 0111875
Reference: [10] J. Kurzweil, J. Jarník: The $PU$-integral: its definition and some basic properties.In New integrals, Lecture Notes in Math. 1419, pages 66-81, Springer-Verlag, New York, 1990. MR 1051921
Reference: [11] W. F. Pfeffer: The Gauss-Green theorem.Advances in Mathematics, to appear. Zbl 1089.26006, MR 0995997
Reference: [12] W. F. Pfeffer: A Riemann type definition of a variational integral.To appear. Zbl 0749.26006, MR 1072090
Reference: [13] W. F. Pfeffer: A Volterra type derivative of the Lebesgue integral.To appear. Zbl 0789.28005, MR 1135079
Reference: [14] W. F. Pfeffer: The multidimensional fundamental theorem of calculus.J. Australian Math. Soc., 43: 143-170, 1987. Zbl 0638.26011, MR 0896622, 10.1017/S1446788700029293
Reference: [15] W. Riidin: Real and Complex Analysis.McGraw-Hill, New York, 1987.
Reference: [16] 5. Saks: Theory of the Integral.Dover, New York, 1964. MR 0167578
Reference: [17] W. L. C. Sargent: On the integrability of a product.J. London Math. Soc., 23: 28-34, 1948. Zbl 0031.29201, MR 0026113, 10.1112/jlms/s1-23.1.28
Reference: [18] A. I. Volpert: The spaces $BV$ and quasilinear equations.Math. USSR-Sbornik, 2: 225-267, 1967. MR 0216338, 10.1070/SM1967v002n02ABEH002340
Reference: [19] W. P. Ziemer: Weakly Differentiable Functions.Springer-Verlag, New York, 1989. Zbl 0692.46022, MR 1014685
.

Files

Files Size Format View
CzechMathJ_41-1991-4_10.pdf 1.890Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo