Previous |  Up |  Next

Article

Title: $N_2$-locally connected graphs and their upper embeddability (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 41
Issue: 4
Year: 1991
Pages: 731-735
.
Category: math
.
MSC: 05C10
idZBL: Zbl 0760.05030
idMR: MR1134962
DOI: 10.21136/CMJ.1991.102504
.
Date available: 2008-06-09T15:42:51Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102504
.
Reference: [1] M. Behzad G. Chartrand, L. Lesniak-Foster: Graphs & Digraphs.Prindle, Weber & Schmidt, Boston 1979. MR 0525578
Reference: [2] G. Chartrand, R. E. Pippert: Locally connected graphs.Časopis pěst. mat. 99 (1974), 158-163. Zbl 0278.05113, MR 0398872
Reference: [3] A. D. Glukhov: On chord-critical graphs.(in Russian). In: Some Topological and Combinatorial Properties of Graphs. Preprint 80.8. IM AN USSR, Kiev 1980, pp. 24-27. MR 0583198
Reference: [4] N. P. Homenko, A. D. Glukhov: One-component 2-cell embeddings and the maximum genus of a graph.(in Russian). In: Some Topological and Combinatorial Properties of Graphs. Preprint 80.8 IM AN USSR, Kiev 1980, pp. 5-23. MR 0583197
Reference: [5] N. P. Homenko N. A. Ostroverkhy, V. A. Kusmenko: The maximum genus of graphs.(in Ukrainian, English summary). In: $\varphi$-Transformations of Graphs (N. P. Homenko, ed.) IM AN URSR, Kiev 1973, pp. 180-210. MR 0422065
Reference: [6] M. Jungerman: A characterization of upper embeddable graphs.Trans. Amer. Math. Soc. 241 (1978), 401-406. Zbl 0379.05025, MR 0492309
Reference: [7] L. Nebeský: Every connected, locally connected graph is upper embeddable.J. Graph Theory 5 (1981), 205-207. MR 0615009, 10.1002/jgt.3190050211
Reference: [8] L. Nebeský: A new characterization of the maximum genus of a graph.Czechoslovak Math. J. 31 (106) (1981), 604-613. MR 0631605
Reference: [9] L. Nebeský: On locally quasiconnected graphs and their upper embeddability.Czechoslovak Math. J. 35 (110) (1985), 162-166. MR 0779344
Reference: [10] Z. Ryjáček: On graphs with isomorphic, non-isomorphic and connected $N\sb 2$-neighbourhoods.Časopis pěst. mat. 112 (1987), 66-79. MR 0880933
Reference: [11] J. Sedláček: Local properties of graphs.(in Czech). Časopis pěst. mat. 106 (1981), 290-298. MR 0629727
Reference: [12] D. W. VanderJagt: Sufficient conditions for locally connected graphs.Časopis pěst. mat. 99 (1974), 400-404. Zbl 0294.05123, MR 0543786
Reference: [13] A. T. White: Graphs, Groups, and Surfaces.North-Holland, Amsterdam 1984. Zbl 0551.05037, MR 0780555
Reference: [14] N. H. Xuong: How to determine the maximum genus of a graph.J. Combinatorial Theory Ser. B26 (1979), 217-225. Zbl 0403.05035, MR 0532589, 10.1016/0095-8956(79)90058-3
.

Files

Files Size Format View
CzechMathJ_41-1991-4_14.pdf 592.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo