Previous |  Up |  Next

Article

Title: On the polynomial eigenvalue problem with positive operators and location of the spectral radius (English)
Author: Marek, Ivo
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 14
Issue: 2
Year: 1969
Pages: 146-159
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: The purpose of this article is to give some estimates for the spectral radius of the polynomial eigenvalue problem, i.e. to derive some estimates for the singularity of the operator-function $F$, $F(\lambda)=\lambda^mA_0-\sum^m_{k=1} \lambda^{m-k}A_k$ with the maximal absolute value. It is assumed that $A_1,\ldots,A_m,A^{-1}_0$ are bounded linear operators mapping a Banach space into itself. Further, it is assumed that the operators $B_j$, where $B_j=A^{-1}_0 A_j, j=1,2,\ldots,m$, leave a cone invariant. (English)
Keyword: functional analysis
MSC: 47-30
idZBL: Zbl 0175.13701
idMR: MR0246148
DOI: 10.21136/AM.1969.103217
.
Date available: 2008-05-20T17:44:47Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103217
.
Reference: [1] K. P. Hadeler: Eigenwerte von Operatorpolynomen.Arch. Rational Mech. Anal. 20 (1965) 72-80. Zbl 0136.12601, MR 0184419, 10.1007/BF00250191
Reference: [2] M. A. Krasnoselski: Положительные решения операторных уравнений.(Positive Solutions of Operator Equations.) Gostechizdat, Moscow 1962. MR 0145331
Reference: [3] M. G. Krejn M. A. Rutman: Линейные операторы оставлающие инвариантным конус в пространстве Банаха.(Linear operators leaving a cone invariant in a Banach space.) Uspehi Mat. Nauk 3 (1948), 3-95.
Reference: [4] I. Marek: Přibližné stanovení spektrálního poloměru kladného nerozložitelného zobrazení.(Spektralradius einer positiven unzerlegbaren Abbildung). Apl. mat. 12 (1967), 351 - 363. MR 0225191
Reference: [5] I. Marek: A note on $\chi$-positive operators.Commen. Math. Univ. Carolinae 4 (1963), 137-146. MR 0167843
Reference: [6] I. Marek: On the approximate construction of eigenvectors corresponding to a pair of complex conjugated eigenvalues.Mat.-Fyz. časopis Sloven. Akad. Vied 14 (1964), 277-288. MR 0191081
Reference: [7] I. Marek: Spektraleigenschaften der $\chi$-positiven Operatoren und Einschliessungssätze für den Spektralradius.Czechoslovak Math. J. 16 (1966), 493 - 517. MR 0217622
Reference: [8] I. Marek: Über einen speziellen Typus der linearen Gleichungen im Hilbertschen Raume.Časopis pěst. mat. 89 (1964), 155-172. Zbl 0187.38202, MR 0185443
Reference: [9] I. Marek: $u_0$-positive operators and some of their applications.SIAM J. Appl. Math. 15 (1967), 484-494. MR 0233176, 10.1137/0115044
Reference: [10] P. H. Müller: Eine neue Methode zur Behandlung nichtlinearer Eigenwertaufgaben.Math. Z. 70 (1959), 381-406. MR 0105024
Reference: [11] I. Sawashima: On spectral properties of some positive operators.Natur. Sci. Rep. Ochanomizu Univ. 15 (1964), 55-64. Zbl 0138.07801, MR 0187096
Reference: [12] H. Schaefer: On the singularities of an analytic function with values in a Banach space.Arch. Math. 11 (1960), 40-43. Zbl 0093.12402, MR 0112059, 10.1007/BF01236904
Reference: [13] H. Schaefer: Spectral properties of positive linear transformations.Pacific J. Math. 10 (1960), 1009-1019. MR 0115090, 10.2140/pjm.1960.10.1009
Reference: [14] T. Yamamoto: A computational method for the dominant root of a nonnegative irreducible matrix.Numer. Math. 8 (1966), 324-333. Zbl 0163.38801, MR 0218011, 10.1007/BF02162977
.

Files

Files Size Format View
AplMat_14-1969-2_7.pdf 1.901Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo