Previous |  Up |  Next

Article

Title: O nelineárních zpětnovazebních systémech (Czech)
Title: On nonlinear feedback systems (English)
Author: Doležal, Václav
Language: Czech
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 14
Issue: 6
Year: 1969
Pages: 497-515
Summary lang: English
.
Category: math
.
Summary: The paper gives a survey of some recent results on the stability and boundedness of the nonlinear feedback systems of the input-output type attained by the methods of abstract spaces. ()
MSC: 93-02
MSC: 93B52
MSC: 93C10
MSC: 93D15
idZBL: Zbl 0206.16403
idMR: MR0247899
DOI: 10.21136/AM.1969.103256
.
Date available: 2008-05-20T17:46:36Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103256
.
Reference: [1] A. H. Колмогоров С. В. Фомин: Элементы теории функций и функционального анализа.Изд. Моск. Универзитета 1964. Zbl 1230.62001
Reference: [2] I. W. Sandberg: Some results on the theory of physical systems governed by nonlinear functional equations.BSTJ, vol. 44, (1965), str. 871-898. Zbl 0156.15804, MR 0179563
Reference: [3] I. W. Sandberg: On the $L_2$-boundedness of solutions of nonlinear functional equations.BSTJ, vol. 43, (1964), str. 1581-1599. MR 0171185
Reference: [4] I. W. Sandberg: On the boundedness of solutions of nonlinear integral equations.BSTJ, vol. 44, (1965), str. 439-453. Zbl 0141.11102, MR 0199663
Reference: [5] I. W. Sandberg: On the response of nonlinear control systems to periodic input signals.BSTJ, vol. 43, (1964), str. 911-926. Zbl 0128.36001
Reference: [6] I. W. Sandberg: Some stability results related to those of V. M. Popov.BSTJ, vol. 44, (1965), str. 2133-2148. Zbl 0204.16602, MR 0195607
Reference: [7] I. W. Sandberg: Conditions for the causality of nonlinear operators defined on a function space.Quarterly Appl. Math., Vol. XXIII (1965), str. 87-91. Zbl 0135.36801, MR 0188836, 10.1090/qam/188836
Reference: [8] G. Zames: On the input-output stability of time-varying nonlinear feedback systems, Part. I..IEEE Trans. Aut. Control, Vol. AC-11, (1966), str. 228-238. 10.1109/TAC.1966.1098316
Reference: [9] G. Zames: On the input-output stability of time-varying nonlinear feedback systems, Part II..IEEE Trans. Aut. Control, Vol. AC-11, (1966), str. 465-476. 10.1109/TAC.1966.1098356
Reference: [10] G. Zames: Nonlinear time-varying feedback systems-conditions for $L_{\infty}$-boundedness.Proc. 3rd Ann. Allerton Conf., (1965), str. 460-471. MR 0245374
Reference: [11] G. Zames, L. P. Falb: Stability conditions for systems with monotone and slope-restricted nonlinearities.Proc. Conf. on Math. System Theory, Lon Angeles, (1967). MR 0229470
Reference: [12] V. Doležal: On general feedback systems containing delayers.Aplikace matematiky 13 (1968), 489-507. MR 0242522
Reference: [13] V. Doležal: On general nonlinear and quasi-linear unanticipative feedback systems.Aplikace matematiky 14 (1969), 220-240. MR 0247898
Reference: [14] Я. Кудревич: Устойчивость нелинейных систем с обратной связью.Автоматика я телемеханика, Том XXV, Но 8, стр. 1145-1155.
Reference: [15] Я. Кудревич: Быстрота расхождения или затухания колебаний в динамических системах.Бюллетен польской Академии наук, серия тех. наук, том XIII, Но 3, 1965, стр. 7-10. Zbl 1099.01519
Reference: [16] Я. Кудревич: Положительные операторы и условия устойчивости динамических систем.Бюллетен польской Академии наук, серия тех. наук., том XII, Но 12, 1964, стр. 41-44. Zbl 1117.65300
.

Files

Files Size Format View
AplMat_14-1969-6_4.pdf 3.435Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo