Previous |  Up |  Next

Article

Title: On Reissner's variational theorem for boundary values in linear elasticity (English)
Author: Hlaváček, Ivan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 16
Issue: 2
Year: 1971
Pages: 109-124
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: E. Reissner suggested a variational theorem for the theory of elasticity, related closely to the well-known Trefftz method. In the present paper, the Reissner's theorem is discussed within the range of linear anisotropic and non-homogeneous elasticity. For the traction boundary-value problem, the minimal property of the functional and the convergence of any minimizing sequence are proved. For the displacement boundary-value problem and sime mixed problems, it is shown that a modification is necessary. Then, in case of the displacement problem, the maximal property of the functional on the modified class of admissible functions and the convergence of maximizing sequence are proved. ()
MSC: 74B05
MSC: 74B99
MSC: 74H99
MSC: 74P10
MSC: 74S30
idZBL: Zbl 0228.73028
idMR: MR0281402
DOI: 10.21136/AM.1971.103335
.
Date available: 2008-05-20T17:50:08Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103335
.
Reference: [1] E. Reissner: On some variational theorems in elasticity.Problems of Continuum Mechanics, 370-381. Contributions in honor of 70th birthday of N. I. Muschelišvili, 1961. MR 0122087
Reference: [2] D. Rüdiger: Zur Trefftzschen Methode in der Elastizitätstheorie.Appl. Mech., Proc. XIth internát. Congr. appl. Mech., Munich 1964, 350-354, 1966.
Reference: [3] К. Ф. Черных: Линейная теория оболочек.ч. II, гл. IX., Издат. Ленинград, унив., 1964. Zbl 1117.65300
Reference: [4] I. Hlaváček: Derivation of non-classical variational principles in the theory of elasticity.Aplikace matematiky 12, 1967, 1, 15-29. MR 0214324
Reference: [5] I. Hlaváček: Variational principles in the linear theory of elasticity for general boundary conditions.Aplikace matematiky 12, 1967, 6, 425 - 448. MR 0231575
Reference: [6] I. Hlaváček J. Nečas: On inequalities of Korn's type. II. Applications to linear elasticity.Archive for Ratl. Mech. Anal. 36, 1970, 312-334. MR 0252845, 10.1007/BF00249519
Reference: [7] С. Г. Михлин: Проблема минимума квадратичного функционала.Гостехиздат, 1952. Zbl 1145.11324
Reference: [8] С. Г. Михлин: Вариационные методы в математической физике.Москва 1957. Zbl 0995.90594
.

Files

Files Size Format View
AplMat_16-1971-2_5.pdf 1.932Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo