Previous |  Up |  Next

Article

Title: Die allgemeine Lösung einer zylindrischen Differentialgleichung vierter Ordnung nullten Parameterwertes (German)
Title: The general solution of a cylindrical differential equation of fourth order with parameter value zero (English)
Author: Panc, Vladimír
Language: German
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 16
Issue: 3
Year: 1971
Pages: 203-214
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: The paper gives a comprehensive review of general solutions of the ordinary linear differential equation (1) $\Delta^2w+2\epsilon\Delta w+w=0, \ \Delta=d^2/d\rho^2+(1/\rho)(d/d\rho)$, the particular solution of which is represented by the Bessel function $w=Z_0(\rho\sqrt{\lambda})$of zero index with a real, imaginary or complex argument, respectively. In the case $\epsilon = \pm1$ the corresponding characteristic equation $\lambda^2 - 2\epsilon\lambda + 1=0$ evidently zields one double root $\lambda=\pm 1$; then another independent particular solution of Eq. (1) is represented by the function $w=\rho Z_1(\rho\sqrt{\pm 1})$. Generally it is proved that the general solution of a double Bessel equation of the $v$-th index (2) $[\Delta + \lambda - (v/\rho)^2]^2w=0$ can be written in the form $w=A_1J_v(\rho sqrt{\lambda})+A_2\rho J_{v+1}(\rho\sqrt{\lambda})+A_3Y_v(\rho\sqrt{\lambda})+A_4\rho Y_{v+1}(\rho\sqrt{\lambda})$ where $A_1$ to $A_4$ denote the constants of integration and $J_v(\rho \sqrt{\lambda}),\ Y_v(\rho \sqrt{\lambda})$ are the Bessel functions of the $v$-th index of the first and second kinds, respectively. ()
MSC: 30D05
MSC: 34M99
MSC: 39B22
MSC: 39B32
MSC: 74Bxx
idZBL: Zbl 0224.34008
DOI: 10.21136/AM.1971.103346
.
Date available: 2008-05-20T17:50:38Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103346
.
Reference: [1] B. G. Korenjew: Einige in Besselschen Funktionen lösbare Aufgaben der Elastizitatstheorie und Wärmeleitung.(russisch), Moskau 1960.
Reference: [2] V. Pane: Theorie der schubweichen Kreisplatte auf elastischer Unterlage.Acta mechanica, Vol. 1/3, 1965, 294-317. 10.1007/BF01387240
Reference: [3] F. Schleicher: Kreisplatten auf elastischer Unterlage.Berlin 1926.
Reference: [4] : Table of the Bessel Functions $J_0 (z)$ and $J_1 (z)$ for Complex Arguments.New York 1943, Moskau 1963. Zbl 0061.30206
Reference: [5] : Table of the Bessel Functions $Y_0 (z)$ and $Y_1 (z)$ for Complex Arguments.New York 1950, Moskau 1963. Zbl 0041.24504
Reference: [6] Jahnke-Emde-Lösch: Tafeln höherer Funktionen.Stuttgart 1960.
Reference: [7] E. Kamke: Differentialgleichungen, Lösungsmethoden und Lösungen.B. 1, Gewöhnliche Differentialgleichungen, Leipzig 1951.
Reference: [8] E. T. Whittaker G. N. Watson: A Course of Modern Analysis.Cambridge 1927.
.

Files

Files Size Format View
AplMat_16-1971-3_7.pdf 1.521Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo