Previous |  Up |  Next

Article

Title: Thermodynamics of monopolar continuum of grade $n$ (English)
Author: Bucháček, Karel
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 16
Issue: 5
Year: 1971
Pages: 370-383
Summary lang: Czech
.
Category: math
.
Summary: Contrary to the theory of the simple material it is assumed that the values of physical quantities at a point are arrected by the deformation history of a finite neighborhood of the point. In the case of the monopolar continuum of grade $n$, the physical quantities are in a functional dependence on the temperature and, moreover, on 4n$ deformation gradients which are found from a single shift function. Equations of equilibrium and the boundary values for all $n$ stress tensors are evaluated on the basis of the First Law of Thermodynamics. Introducing the Hilbert space with the norm which expresses the fading of the memory it is possible to derive the system of constitutive equations from the Second Law of Thermodynamics. These equations enable us to evaluate the entropy as well as all stress tensors provided the functional dependence of the free energy on the history of $n$ deformation gradients and on the history of temperature is given. ()
MSC: 74A15
idZBL: Zbl 0237.73002
idMR: MR0290662
DOI: 10.21136/AM.1971.103368
.
Date available: 2008-05-20T17:51:40Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103368
.
Reference: [1] C. Truesdell R. A. Toupin: The Classical Field Theories, Handbuch der Physik.III/1 (1960), Springer Verlag, Berlin. MR 0118005
Reference: [2] C. Truesdell W. Noll: The Non-Linear Field Theories of Mechanics, Handbuch der Physik.III/3 (1965), Springer Verlag, Berlin. MR 0193816
Reference: [3] B. Coleman: Thermodynamics of Materials with Memory.Arch. Rational Mech. Anal., 17 (1964), 1 - 46. MR 0171419, 10.1007/BF00283864
Reference: [4] B. Coleman: On Thermodynamics, Strain Impulses and Viscoelasticity.Arch. Rational Mech. Anal., 17 (1964), 230-254. Zbl 0125.13603, MR 0171420, 10.1007/BF00282439
Reference: [5] A. E. Green R. S. Rivlin: Multipolar Continuum Mechanics.Arch. Rational Mech. Anal., 17 (1964), 113-147. MR 0182192, 10.1007/BF00253051
Reference: [6] B. T. Koйтep: Моментные напряжения в теории упругости.Механика, 91 (1965), 89-112.
Reference: [7] A. E. Green R. S. Rivlin: Simple Force and Stress Multipoles.Arch. Rational Mech. Anal., 16 (1964), 325-353. MR 0182191, 10.1007/BF00281725
Reference: [8] A. E. Green P. M. Naghdi: A General Theory of an Elastic Plastic Continuum.Arch. Rational Mech. Anal., 18 (1965), 251 - 281. MR 1553473, 10.1007/BF00251666
Reference: [9] P. Perzyna: Teoria lepkoplastyczności.Panstwowe wydawnictwo naukowe, Warszawa 1966.
Reference: [10] R. D. Midlin: Micro-structure in Linear Elasticity.Arch. Rational Mech. Anal., 16 (1964), 15-78. MR 0160356
.

Files

Files Size Format View
AplMat_16-1971-5_4.pdf 1.768Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo