Previous |  Up |  Next


The transport equation for the neutron density in an infinite absorbing and non-multiplying medium is discussed provided the initial distribution is known. The macroscopic effective cross-sections and sources are considered to be functions of spatial, angular, energetic and time coordinates. Two theorems asserting the existence and uniqueness of the solution of the problem are presented.
[1] J. Mika: The initial-value problem in neutron thermalization. Nukleonik 9 (1967), 303.
[2] J. T. Marti: Mathematical foundations of kinetics in neutron transport theory. Nukleonik 8 (1966), 159-163. Zbl 0134.12702
[3] I. Vidav: Existence and uniqueness of nonnegative eigenfunctions of the Boltzmann operator. Journ. of Math. Ann. and Appl. 22 (1968), 144-155. DOI 10.1016/0022-247X(68)90166-2 | MR 0230531 | Zbl 0155.19203
[4] J. Potoček: Iterative methods. (reports lectured at Mathematical Institute of Charles's University) Prague 1958-1959.
[5] Э. Камке: Справочник по дифференциальным уравнениям в частных производных первого порядка. Москва 1966. Zbl 1155.78304
Partner of
EuDML logo