Previous |  Up |  Next


The Riccati equations as well as some interesting inequalities for the ratios of Bessel functions of purely imaginary argument $T_p(x;1)=\frac {K_p(x)}{xK_{p+1}(x)}$ and $T_p(x;-1)=\frac {I_p(x)}{xI_{p-1}(x)}$ are derived. Solutions of the Riccati equations are given in terms of power series in $p^{-1}$. In particular, the asymptotic formulae for $T_p(x;\pm 1)$ with a remainder of order $O(p^{-5})$ are obtained. For $p$ small, they represent an asymptotic expansion in $x$ up to the order $O(x^{-5})$.
[1] Feenberg E.: Shell theory of the nucleus. Princeton University Press; Princeton (1955). Zbl 0068.40404
[2] Lane A. M., Thomas R. G.: R-matrix theory of nuclear reactions. (russian translation), Izdateľstvo inostrannoy literatury; Moscow (1960).
[3] Calogero F.: Variable phase approach to potential scattering. Academic Press; New York and London (1967). Zbl 0193.57501
[4] Baz' A. I., Zhukov M. V.: Yadernaya Fizika 11 (1970), 779-78.
[5] Calogero F., al.: Nuovo Cimento 67 A (1970), 641 - 657. Zbl 0195.11801
[6] Trlifaj L.: Czech. J. Phys. B23 (1973), 416.
[7] Watson G. N.: Theory of Bessel functions. Cambridge University Press; Cambridge (1962).
[8] Montroll E. W.: J. Math, and Physics 25 (1946), 37-48. MR 0016499 | Zbl 0063.04081
[9] Kiefer J. E., Weiss G. H.: Israel J. Math. 12 (1972), 46-48. MR 0301256 | Zbl 0253.33008
[10] Olver F. W. J.: Bessel functions, part III. Royal Soc. Math. Tables, vol. 7, University Press; Cambridge (1960). MR 0119441 | Zbl 0094.31603
[11] Gray A., Mathews G. B. A.: A treatise on Bessel functions and their application to physics. second edition (russian translation), Izdateľstvo inostrannoy literatury; Moscow (1953).
Partner of
EuDML logo