Previous |  Up |  Next

Article

Title: A rank decision rule for a combined problem of testing and classification (English)
Author: Nguyen, van Huu
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 19
Issue: 3
Year: 1974
Pages: 152-168
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: The paper concerns the problem of testing the hypothesis of randomness against a group of regression alternatives combined with a subsequent decision which of the alternatives is true. A rank decision rule for this problem is proposed which is locally optimal. For some special cases also the asymptotic distributions of the testing statistics are studied. ()
MSC: 62G10
MSC: 62H30
idZBL: Zbl 0297.62028
idMR: MR0356356
DOI: 10.21136/AM.1974.103526
.
Date available: 2008-05-20T17:58:42Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103526
.
Reference: [1] Doob J. L.: Heuristic approach to the Kolmogorov - Smirnov theorem.Annals of Math. Stat. 20 (1949), 393-403. 10.1214/aoms/1177729991
Reference: [2] Hájek J., Šidák Z.: Theory of Rank Tests.Academia, Publishing House of the Czechoslovak Academy of Sciences. Praha 1967. MR 0229351
Reference: [3] Hall I. J., Kudo A.: On slippage tests I. A generalization of Neyman-Pearson's Lemma.Annals of Math. Stat. 39 (1968), 1693-1699. Zbl 0182.51401, 10.1214/aoms/1177698151
Reference: [4] Hall I. J., Kudo A., Yeh N.C.: On slippage tests II. Similar slippage tests.Annals of Math. Stat. 39 (1968), 2029-2037. Zbl 0176.48601, 10.1214/aoms/1177698030
Reference: [5] Karlin S., Truax D. R.: Slippage problems.Annals of Math. Stat. 31 (1960), 296-324. Zbl 0131.35602, 10.1214/aoms/1177705895
Reference: [6] Mosteller F.: A k-sample slippage test for an extreme population.Annals of Math. Stat. 19 (1948), 53-65. Zbl 0031.37102, 10.1214/aoms/1177730290
Reference: [7] Nguyen van Huu: Rank test of hypothesis of randomness against a group of regression alternatives.Aplikace Matematiky 17 (1972), 422-447. Zbl 0258.62025, MR 0315837
Reference: [8] Paulson E.: An optimal solution to k-sample slippage problem for the normal distribution.Annals of Math. Stat. 23 (1952), 610-616, MR 0052077, 10.1214/aoms/1177729340
Reference: [9] Pfanzagl J.: Ein kombiniertes Test & Klassifikations-Problem.Metrika 2 (1959), 11-45. MR 0102149, 10.1007/BF02613721
Reference: [10] Slepian D.: The one-sided barrier problem for Gaussian noise.Bell System Techn. J. 41 (1962), 463-501. MR 0133183, 10.1002/j.1538-7305.1962.tb02419.x
Reference: [11] Truax D. R.: An optimum slippage test for the variance of k normal distributions.Annals of Math. Stat. 24 (1953) 669-674. MR 0060784, 10.1214/aoms/1177728923
.

Files

Files Size Format View
AplMat_19-1974-3_3.pdf 1.882Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo