Previous |  Up |  Next

Article

Title: On properties of binary random numbers (English)
Author: Víšek, Jan Ámos
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 19
Issue: 6
Year: 1974
Pages: 375-385
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: Let $\{X_k\}^\infty_{k=1}$ be a sequence of independent zero-one random variables (rv) with $P(X_k=1)=\frac{1}{2} + \Delta$. Then we define the binary random number (brn) $Y=\sum^\infty_{k=1} X_k2^{-k}$. An ideal generator produces 0 and 1 with equal probability, but a real one does it only approximately. The purpose of this paper is to find distribution of brn for $-\frac{1}{2}<\Delta <\frac{1}{2}$ (also $\Delta =\Delta_k$). Particularly, convergence of the normed sum of brn to normally distributed rv is studied by means of Edgeworth expansion. ()
MSC: 60F05
MSC: 60F99
MSC: 65C10
idZBL: Zbl 0303.60020
idMR: MR0375442
DOI: 10.21136/AM.1974.103555
.
Date available: 2008-05-20T18:00:00Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103555
.
Reference: [1] Г. А. Козлов: О распределении случайных чисел, вырабатываемых последовательными физическими датчиками.Теория вероятностней 16 (1971) 370. Zbl 1168.35423
Reference: [2] M. Kаc: Statistical Independence in Probability Analysis and Number Theory.Carus Mathematical Monograph, No. 12 The Mathematical Association of America, 1959. MR 0110114
Reference: [3] Jessen-Wintner: Distributions and the Riemann Zeta functions.Trans. Amer. Math. Soc. 38, 48-88 (1935). MR 1501802, 10.1090/S0002-9947-1935-1501802-5
Reference: [4] В. В. Петров: Суммы независимых случайных величин.Москва 1972. Zbl 1156.34335
.

Files

Files Size Format View
AplMat_19-1974-6_3.pdf 1.441Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo