Previous |  Up |  Next

Article

Title: Universal approximation by systems of hill functions (English)
Author: Segeth, Karel
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 19
Issue: 6
Year: 1974
Pages: 403-436
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: Let $\{\omega_y\}$ be a system of infinitely smooth rapidly decreasing functions and $\eta (h)$ a certain increasing function, $\eta (0)=0$. Then the approximation sought in the form $\sum c_k\omega_{\eta(h)}((x/h-k)\eta(h))$ is universal, i.e., for any approximated function $f$, the system $\{\omega_y\}$ of hill functions gives the best possible order of approximation limited only by the smoothness of $f$. Moreover, the system $\{\omega_y\}$ can be chosen so that the Fourier transform of $\omega_y$ has zeros at the points $\pm2\pi j/y; j=1,\ldots, J$. As a consequence, the error of the approximation decreases. ()
MSC: 41A30
MSC: 65N35
idZBL: Zbl 0305.41011
idMR: MR0388812
DOI: 10.21136/AM.1974.103558
.
Date available: 2008-05-20T18:00:09Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103558
.
Reference: [1] I. Babuška: Approximation by hill functions.Comment. Math. Univ. Carolinae 11 (1970), 787-811. MR 0292309
Reference: [2] I. Babuška: The rate of convergence for the finite element method.SIAM J. Numer. Anal. 8 (1971), 304-315. MR 0287715, 10.1137/0708031
Reference: [3] I. Babuška J. Segethová K. Segeth: Numerical experiments with the finite element method I.Tech. Note BN-669, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, August 1970.
Reference: [4] G. Fix G. Strang: Fourier analysis of the finite element method in Ritz-Galerkin theory.Studies in Appl. Math. 48 (1969), 265-273. MR 0258297, 10.1002/sapm1969483265
Reference: [5] J. L. Lions E. Magenes: Problèmes aux limites non homogènes et applications.Vol. 1. Dunod, Paris 1968. MR 0247243
Reference: [6] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584
Reference: [7] K. Segeth: Universal approximation by hill functions.Czechoslovak Math. J. 22 (1972), 612-640. Zbl 0247.41011, MR 0310502
Reference: [8] K. Segeth: A remark on a class of universal hill functions.Acta Univ. Carolinae-Math. et Phys. 15 (1974), No. 1 - 2, to appear. MR 0390598
Reference: [9] G. Strang G. J. Fix: An analysis of the finite element method.Prentice-Hall, Englewood Cliffs, N. J. 1973. MR 0443377
Reference: [10] K. Yosida: Functional analysis.Academic Press, New York-London 1965. Zbl 0126.11504, MR 0180824
.

Files

Files Size Format View
AplMat_19-1974-6_6.pdf 3.732Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo