Previous |  Up |  Next

Article

Title: On a generalization of the orthogonal regression (English)
Author: Kubáček, Lubomír
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 20
Issue: 2
Year: 1975
Pages: 87-95
Summary lang: English
Summary lang: Slovak
.
Category: math
.
Summary: The parameters of the linear conform transformation between two twodimensional coordinate systems should be estimated from the results of the measurement performed in both systems. The aim of the measurement is to determine the coordinates of $N$ points which are called identical. The maximum-likehood solution of this problem is given. ()
MSC: 62F10
MSC: 62J05
idZBL: Zbl 0311.62036
idMR: MR0375650
DOI: 10.21136/AM.1975.103573
.
Date available: 2008-05-20T18:00:46Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103573
.
Reference: [1] Anderson T. W.: An introduction to multivariate statistical analysis.J. Wiley, New York (1958). Zbl 0083.14601, MR 0091588
Reference: [2] Bartlett M. S.: Fitting a straight line when both variables are subject to error.Biometrics, 5(1949), 207-212. MR 0031687, 10.2307/3001936
Reference: [3] Bourbaki N.: Elements de Mathématique. Livre II, Algebre.Ch. 3, Hermann, Paris (1958).
Reference: [4] Creasy M. A.: Confidence limits for the gradient in the linear functional relationship.J. Roy. Statist. Soc. B 18, (1956), 65-69. Zbl 0070.37801, MR 0081600
Reference: [5] Dorff M., Gurland J.: Estimation of the parameters of a linear functional relation.J. Roy. Statist. Soc. B 23, (1961), 160-170. Zbl 0115.14101, MR 0124110
Reference: [6] Geary R. C.: Determination of linear relations between systematic parts of variables with errors observations the variances of which are unknown.Econometrica 17, (1949), 30-59. MR 0028560, 10.2307/1912132
Reference: [7] Halperin M.: Fitting of straight lines and prediction when both variables are subject to error.J. Amer. Statist. Assoc. 56, (1961), 657-669. Zbl 0108.16004, MR 0124953, 10.1080/01621459.1961.10480651
Reference: [8] Kubáček L.: Some statistical aspects of the estimation of parameters of a linear conform transformation.Aplikace matematiky 15, (1970), 190-206. MR 0261753
Reference: [9] Madansky A.: The fitting of straight lines when both variables are subject to error.Amer. Statist. Ass. Journ, 54, (1959), 173-206. Zbl 0088.35804, MR 0102875, 10.1080/01621459.1959.10501505
Reference: [10] Rao C. R.: Linear statistical inference and its applications.J. Wiley, New York (1965). Zbl 0137.36203, MR 0221616
Reference: [11] Villegas C.: Maximum likelihood estimation of a linear functional relationship.Ann. Math. Statist. 32, (1961), 1048-1062. Zbl 0104.12902, MR 0131920, 10.1214/aoms/1177704845
Reference: [12] Villegas C.: On the least squares estimation of a linear relation.Bol. Fac. Ingen. Agrimens. 8, (1963), 47-63; Fac. Ingen. Montevideo. Publ. Inst. Mat. Estadist. 3, (1963), 189-203. Zbl 0115.14302, MR 0159390
Reference: [13] Villegas C.: Confidence region for a linear relation.Ann. Math. Statist. 35, (1964), 780- 788. Zbl 0133.11901, MR 0163394, 10.1214/aoms/1177703577
Reference: [14] Villegas C.: On the asymptotic efficiency of least squares estimators.Ann. Math. Statist. 37, (1966), 1676-1683. Zbl 0158.18101, MR 0203859, 10.1214/aoms/1177699156
Reference: [15] Wald A.: The fitting of straight lines if both variables are subject to error.Ann. Math. Statist. 11, (1940), 284-300. Zbl 0023.34402, MR 0002739, 10.1214/aoms/1177731868
Reference: [16] Wilks S. S.: Mathematical Statistics.J. Wiley, New York (1963). MR 0144404
.

Files

Files Size Format View
AplMat_20-1975-2_3.pdf 1.197Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo