Previous |  Up |  Next

Article

Title: Rectangular thin elastic plate with edges “remaining straight‟ during the deformation (English)
Author: Sadovský, Zoltán
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 20
Issue: 5
Year: 1975
Pages: 378-386
Summary lang: English
Summary lang: Slovak
.
Category: math
.
Summary: The paper deals with the V. Kármán equations of a thin elastic plate. The edges of the rectangular plate are simply supported or clamped and the membrane effects due to the deflection of the plate do not alter its curvature. It is shown that the boundary condition can be given completely in terms of the deflection function and the stress function. After defining the variational solution of the problem two special cases, namely the buckling problem and the bending problem are treated. A bifurcation theorem is proved in the first case and an existence theorem in the other. ()
MSC: 74G60
MSC: 74K20
idZBL: Zbl 0327.73055
idMR: MR0406021
DOI: 10.21136/AM.1975.103603
.
Date available: 2008-05-20T18:02:11Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103603
.
Reference: [1] Berger M. S.: On von Kármán's equations and the buckling of a thin elastic plate, I. The clamped plate.- Comm. Pure Appl. Math. 20 (1961), 687-719. MR 0221808, 10.1002/cpa.3160200405
Reference: [2] Berger M. S., Fife P. C.: Von Kármán's equations and the buckling of a thin elastic plate, II. Plate with general edge conditions.- Comm. Pure Appl. Math., 21 (1968), 227-241. Zbl 0162.56501, MR 0229978, 10.1002/cpa.3160210303
Reference: [3] Knightly G. H.: An existence theorem for the von Kármán equations.-- Arch. Rat. Mech. Anal., 27 (1967), 233-242. Zbl 0162.56303, MR 0220472, 10.1007/BF00290614
Reference: [4] Муштари X. М., Галимов К. 3.: Нелинейная теория упругих оболочек.- Таткнигоиздат, Казань 1957. Zbl 0995.90594
Reference: [5] Nečas J.: Les méthodes directes en théorie des équations elliptiques.- Academia, Prague 1967. MR 0227584
Reference: [6] Nečas J., Naumann J.: On a boundary value problem in nonlinear theory of thin elastic plates.- Aplikace Matematiky., 19 (1974), 7-16. MR 0338557
Reference: [7] Папкович П. Ф.: Строительная механика корабля, II.- Оборонгиз, Ленинград 1941. Zbl 0063.09073
Reference: [8] Скрыпиик И. В.: Точки бифуркации вариационных задач.- Математическая физика, В. Р., Наукова Думка, Киев 1971, 117-123. Zbl 1168.35423
Reference: [9] Скрыпник И В.: О бифуркации равновесия гибких пластин.- Математическая физика, В. 13., Наукова думка, Киев 1973, 159-161. Zbl 1221.53041, MR 0327092
.

Files

Files Size Format View
AplMat_20-1975-5_6.pdf 1.643Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo