Previous |  Up |  Next

Article

Title: Parallel method of conjugate directions for minimization (English)
Author: Sloboda, Fridrich
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 20
Issue: 6
Year: 1975
Pages: 436-446
Summary lang: English
Summary lang: Slovak
.
Category: math
.
Summary: A nongradient method of conjugate directions for minimization id described. The method has the quadratic convergence property and is closely related to the method for linear systems, which makes it possible to use reduced algorithms when the corresponding matrix is sparse. ()
MSC: 65K05
MSC: 90C20
idZBL: Zbl 0326.90050
idMR: MR0395830
DOI: 10.21136/AM.1975.103611
.
Date available: 2008-05-20T18:02:46Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103611
.
Reference: [1] N. Adachi: On variable-metric algorithms.JOTA, б (1971), 391-410. Zbl 0203.48703, MR 0293814, 10.1007/BF00931977
Reference: [2] H. Y. Huang: Unified approach to quadratically convergent algorithms for minimization.JOTA, б (1970), 405-423. MR 0288939
Reference: [3] R. Fletcher M. J. D. Powell: A rapidly convergent descent method for minimization.Соmр. J., 2 (1963), 163-168. MR 0152116
Reference: [4] M. R. Hestenes E. Stiefel: The method of conjugate gradients for solving linear systems.J. Res. Nat. Bur. Standards 49 (1952), 409-436. MR 0060307, 10.6028/jres.049.044
Reference: [5] R. Fletcher C. M. Reeves: Function minimization by conjugate gradients.Соmр. J. 2., (1964), 149-154. MR 0187375
Reference: [6] M. J. D. Powell: An efficient method for finding minimum of a function of several variables without calculating derivatives.Соmр. J., 7 (1964), 155-162. MR 0187376
Reference: [7] W. I. Zangwill: Minimizing a function without calculating derivatives.Com. J., 7 (1967), 293-296. Zbl 0189.48004, MR 0234614
Reference: [8] D. Chazan W. L. Miranker: A nongradient and parallel algorithm for unconstrained minimization.SIAM J. Control. 2 (1970), 207-217. MR 0275637
Reference: [9] W. W. Bradbury R. Fletcher: New iterative methods for solution of the eigenproblern.Numer. Math., 9 (1966), 259-267. MR 0219230, 10.1007/BF02162089
Reference: [10] R. Bellman R. Kalaba J. Lockett: Dynamic programming and ill-conditioned linear systems.J. of Math. Analysis and Applicat., 10 (1065), 206-215. MR 0171377
Reference: [11] E. J. Beltrami: An algorithmic approach to nonlinear analysis and optimization.Academic Press, New York, 1970. Zbl 0207.17202, MR 0270538
Reference: [12] H. Tokumaru N. Adachi K. Goto: Davidson's method for minimization problems in Hilbert space with an application to control problems.SIAM J. Control, 2 (1970), 163 - 178. MR 0272164
Reference: [13] J. Céa: Optimization théorie et algorithmes.Dunad, Paris, 1971.
Reference: [14] D. M. Himmelblau: Decomposition of large-scale problems.North-Holl. publ. соmр., New York, 1973. Zbl 0254.90002, MR 0456435
Reference: [15] F. Sloboda: Parallel projection method for linear algebraic systems.to appear. Zbl 0398.65013, MR 0428695
.

Files

Files Size Format View
AplMat_20-1975-6_5.pdf 1.317Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo