Previous |  Up |  Next

Article

Title: Stability of iterative schemes for nonselfadjoint equations (English)
Author: Gupta, Murli M.
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 21
Issue: 3
Year: 1976
Pages: 173-184
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: Let $A$ be a nonselfadjoint positive operator in a real Hilbert space. This paper deals with the stability of a class of iterative schemes used to solve the operator equation $Au=f$. A corresponding class of parabolic equations can also be solved by means of these iterative schemes. Several sufficient conditions of stability are obtained which are expressed in terms of known operators and can be used a priori. The results can be applied to problems with variable coefficients and initial-boundary value problems. ()
MSC: 65J05
MSC: 65M12
idZBL: Zbl 0343.65037
idMR: MR0403209
DOI: 10.21136/AM.1976.103637
.
Date available: 2008-05-20T18:04:40Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103637
.
Reference: [1] J. E. Gunn: The Solution of elliptic difference equations by semiexplicit iterative techniques.SIAM J. Numer. Anal. 2, 24-45 (1964). MR 0179962
Reference: [2] M. M. Gupta: Convergence and stability of finite difference schemes for some elliptic equations.Ph. D. thesis, University of Saskatchewan, Saskatoon, Canada (1971). MR 2621802
Reference: [3] L. V. Kantorovich G. P. Akilov: Functional analysis in normed spaces.New York: Pergamon Press 1964. MR 0213845
Reference: [4] H. O. Kreiss: Über die Stabilitätsdefinition für Differenzengleichungen die partieile Differentialgleichungen approximieren.Nordisk Tidskr. Informations - Behandling (BIT) 2, 153-181 (1962). MR 0165712
Reference: [5] P. D. Lax, and B. Wendroff: Difference schemes for hyperbolic equations with high order of accuracy.Comm. Pure Appl. Math. 17, 381-398 (1964). MR 0170484, 10.1002/cpa.3160170311
Reference: [6] G. G. O'Brian M. A. Hyman, and S. Kaplan: A study of the numerical solution of partial differential equations.J. Math, and Phys. 29, 223 - 251 (1951). MR 0040805
Reference: [7] R. D. Richtmyer, K. W. Morton: Difference methods for initialvalue problems.2nd ed., New York: Interscience 1967.
Reference: [8] V. S. Ryabenkii, and A. F. Filippov: Über die Stabilität von Differenzengleichungen.Berlin; Deutscher Verlag der Wissenschaften 1960. MR 0123106
Reference: [9] A. A. Samarskii: Classes of Stable Schemes.Ž. Vyčisl. Mat. i Mat. Fiz. 7, 1096-1133 (1967). MR 0221792
Reference: [10] A. A. Samarskii: Necessary and Sufficient conditions for the stability of two-layer difference schemes.Soviet Math. Dokl. 9, 946-950 (1968).
Reference: [11] A. A. Samarskii: Two layer iteration schemes for nonselfadjoint equations.Soviet Math. Dokl. 10, 554-558 (1969).
Reference: [12] V. Thomée: Stability theory for partial difference operators.SIAM Rev. 11, 152-195 (1969). MR 0250505, 10.1137/1011033
.

Files

Files Size Format View
AplMat_21-1976-3_3.pdf 1.361Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo