Previous |  Up |  Next

Article

Title: Nonlinear iterative methods and parallel computation (English)
Author: Sloboda, Fridrich
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 21
Issue: 4
Year: 1976
Pages: 252-262
Summary lang: English
Summary lang: Slovak
Summary lang: Russian
.
Category: math
.
Summary: Nonlinear iterative methods are investigated and a generalization of a direct method for linear systems is presented which is suitable for parallel computation and for sparse occurrence matrices. ()
MSC: 65H10
MSC: 65K05
MSC: 90C30
idZBL: Zbl 0356.65057
idMR: MR0426411
DOI: 10.21136/AM.1976.103645
.
Date available: 2008-05-20T18:05:03Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103645
.
Reference: [1] J. M. Ortega W. C. Rheinboldt: Iterative solution of nonlinear equations in several variables.AP, New York, 1970. MR 0273810
Reference: [2] M. J. D. Powell: A survey of numerical methods for unconstrained optimization.SIAM Review, 1 (1970), 79-97. Zbl 0218.90059, MR 0258253, 10.1137/1012004
Reference: [3] D. Chazan W. Miranker: A nongradient and parallel algorithm for unconstrained minimization.SIAM J. Control, 2 (1970), 207-217. MR 0275637
Reference: [4] D. M. Himmelblau: Decomposition of large-scale problems.North-Holl. publ. соmр., New York, 1973. Zbl 0254.90002, MR 0456435
Reference: [5] R. M. Karp W. L. Miranker: Parallel minimax search for a maximum.J. of Combinatioral Theory, 1 (1968), 19-35. MR 0220434
Reference: [6] R. P. Brent: Algorithms for minimization without derivatives.Prentice-Hall, Englewood Cliffs, New Jersey, 1973. Zbl 0245.65032, MR 0339493
Reference: [7] W. I. Zangwill: Minimizing a function without calculating derivatives.Соmр. J., 7 (1967), 293-296. Zbl 0189.48004, MR 0234614
Reference: [8] M. J. D. Powell: An efficient method for finding minimum of a function of several variables without calculating derivatives.Compt. J., 7 (1964), 155- 162. MR 0187376, 10.1093/comjnl/7.2.155
Reference: [9] H. T. Kung J. F. Traub: On the efficiency of parallel iterative algorithms for non-linear equations.Symposium on complexity of sequential and parallel numerical algorithms, Cornegie-Mellon University, 1973. MR 0353717
Reference: [10] W. Miranker: Parallel methods for approximating the root of a function.IBM J. of Research and Development, vol. 13, 1967, 297-301. MR 0239752, 10.1147/rd.133.0297
Reference: [11] S. Winograd: Parallel iteration methods, Complexity of computer computations.R. E. Miller and J. W. Thatcher, Plenum Press, New York, 1972, 53 - 60. MR 0383833
Reference: [12] N. Anderson A. Brörck: A new high order method of regula falsi type for computing a root of an equation.BIT, 13 (1973), 253-264. MR 0339474, 10.1007/BF01951936
Reference: [13] F. Sloboda: A parallel projection method for linear algebraic systems.to appear. Zbl 0398.65013, MR 0490260
Reference: [14] F. Sloboda: Parallel method of conjugate directions for minimization.Apl. mat. 6 (1975), 436-446. Zbl 0326.90050, MR 0395830
.

Files

Files Size Format View
AplMat_21-1976-4_2.pdf 1.319Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo